Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Biotechnology and the Coconut

BY: Padma Kumar | Category: Agriculture | Submitted: 2010-07-08 07:03:31
       Author Photo
Article Summary: "Applications of biotechnology in coconut cloning, extracting oil and detection of diseases. Coconut is a versatile cash crop and all parts of the coconut, as well as the coconut tree is used productively one way or the other. This article compiles the recent biotech trends in this area..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Coconut is a cash crop and it means subsistence for thousands of people in South Asia, particularly in Lanka, India, Philippines, Thailand and Malaysia. Philippines are probably the biggest producer of coconut in the world with almost 30% of fertile land planted with coconut.

Although biotechnology in coconuts has been focusing on molecular markers for genetic improvement of the coconut tree as well as for molecular detection of diseases, there are other interesting applications of biotechnology in coconuts and so this article will be concentrating more on those other aspects.

Coconut DNA

As compared to the impact of biotechnology on other vegetable oil crops, there is not much of research to show on coconuts. This is probably because, coconut is a difficult subject to study mainly due to the presence of increased lipid level and polysaccharides like galactomannan in the endosperm and polyphenols in the leaves. These substances make it difficult to get high quality DNA from the coconut plant which is a pre-requisite for any molecular biology oriented research. So the standard procedure is to extract DNA from the young leaves of the early emergent frond. This gives good quality enzyme digestible DNA.

Diseases

The coconut tree is susceptible to several illnesses of bacterial, fungal, viral and phytoplasmal origin. For instance, biotechnology can be used to both detect and counter the Ganoderma butt rot disease which is of fungal origin. For detectection of Ganoderma disease, ELISA test with basidiocarp antiserum can be used, and if found positive, the pathogenicity could be stopped within a few months using Pseudomonas fluorescens and Trichoderma viride.


Coconut oil

Coconut oil is generally extracted from coconut using copra-expeller method and this includes a stage where copra is smoke dried leading to the presence of aflatoxin which is toxic. To remove this substance, biological methods are being adopted like using the microorganisms (Flavobacterium aurantiacum, Rhizopus oryzae, and Tetrahymena pyriformis) that degrade aflatoxin.

But coconut oil can also be extracted now using a completely biotechnological route (that means not through copra-expeller method), although this method may not find favor with most coconut farmers who by and large have small plantations, and who do not have the expertise nor can bear the costs. This fermentation process involves the breaking of coconut milk emulsion by using microbial starter inoculums. These enzymes hydrolyze protein, carbohydrate and lipids in the coconut kernel. So what happens is, as a result of the fermentation, the coconut emulsion separates into oil in the top layer and into water along with carbohydrates in the lower layer. Although several microbial strains have been used for this purpose, the strain of Lactobacillus bulgaricus was found most effective as it only needed a starter concentration of 5% and gave highest yield as well. The advantage with coconut oil made by enzymatic route is that it contained more of lauric oil and it was more potent against inhibiting bacterial growth of Bacillus subtilis, Escherichia coli, Pseudomonas fluorescence and Salmonella. Research is also being conducted to develop enzymes that can restructure fatty acids such as lauric acid that are present in coconut oil.

Interestingly, in the distant future, biotechnology could perhaps challenge (not likely) the pre-emininence of coconut oil, because certain organisms such as moulds (Entomorphtora and Entomorphtora obscura) could even be programmed to make edible oils, though research in this area is very much nascent.

Recombinant proteins

Plants are good for producing recombinant proteins which require a DNA sequence to be put into the plant genome either through biolistics, electroporation or using Agrobacterium tumefaciens. Now research has shown that coconut water which is sterile in nature expresses foreign DNA sequences adequately, which means it could be extrapolated to make recombinant proteins from recombinant DNA vectors.

Coconut cloning

Despite the abundance of rich germplasm of different coconut varieties, biotech research in coconut is very much retrograde. But as coconut trees are susceptible to pests and viral diseases like 'Cadang¬cadang' that has a high fatality rate, coconut cloning using in vitro culture techniques is an area of current research. However till date, somatic embryogenesis research with coconut hasn't produced many results and the coconut palm continues to be propogated by seed. Moreover, though coconut cloning is a possibility, it is also beset with problems like time taken by a coconut tree to grow.

Genetic engineering in coconuts has lagged, perhaps due to the lack of in vitro tissue culture system for studying coconuts, but interestingly as coconut water nuclei are naked and devoid of cell membranes, the possibility exists of micropropogating genetically engineered plant clones.


Coir extraction, bleaching and effluent disposal


Coir is a fibre that can be used to make exquisite floor mats and carpeting. Coir can be extracted from the outer peel or husk of the coconut. The coconut cut from a coconut tree is first hacked to remove the outer peel or husk to separate the nut. These husks are left soaked in small ponds for several days and biotechnology helps reduce this retting period by as much as three months with the use of bacterial cocktails such as "Coirrett" which also lessens pollution problems.

Earlier, bleaching of coir fibres was done using chemical agents, but now it can be done by bacterial and fungal cultures especially by using the enzyme xylanase of fungal origin. Other biotech agents that could be used for this purpose are ligninase and hemicellulase.

The stiffness of coir is on account of the high proportion of lignin and softening could be done by treating the raw fibre with Pseudomonas putida and Phanerocheate chrysosporium.

Biotechnology also has a role to play in effluent disposal connected to coir manufacturing. For example, white rot fungi that can be found growing on corn cob wastes and saw dust is useful in degrading coir effluents.

Perhaps biotechnology would help the coconut tree win the ongoing tussle with the palm tree from a utility point of view.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 9100



Additional Articles:

•   Silver Staining- Developing Photogenic Gels!!

•   Job Prospects in Bioinformatics

•   Pinworms: The Worm That Causes Nocturnal Anal Itching in Children

•   Speciation Patterns | Sympatric Speciation by Polyploidy




Latest Articles in "Agriculture" category:
•   Use of Biotechnology in Agriculture

•   Plant Based Edible Vaccine

•   Genetically Modified Food - Yes or No?

•   Agricultural Biotechnology - Definition and Various Products

•   Career Opportunities in Agriculture Science

•   Synthetic Seed Production and Application

•   Role of Biotechnology in Agriculture | Various Agricultural Technologies

•   Biofortification - A Technique Used in Agriculture

•   Biotechnology in Agriculture Development

•   Biotechnology in Animal Feed and Feeding

•   Biofertilizers: Types, Benefits and Applications

•   Genetically Modified Food - Advantages and Disadvantages

•   Genetically Modified Crops as Medicine

•   Cryopreservation and Conservation of Plant Genetic Material

•   Biotechnology in Rice Farming

•   Bt Corn: Method, Mode of Action and Benefits

•   Safe Insecticides For the Environment

•   Plant Growth Promoting Substances

•   Biodiesel Production Method - Its Advantages and Disadvantages



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us