Biotech Articles
Publish Your Articles Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Genetic Use Restriction Technology (GURT) in Crop Plants.

BY: SUNIL KUMAR, S.V. | Category: Agriculture | Submitted: 2012-03-20 07:36:52
       Author Photo
Article Summary: "In nature, the expression of genes is regulated by several factors, which may be internal to the organism (e.g. proteins or other molecules resulting from the metabolism of the organism itself) or external (e.g. climatic factors). Modern biotechnology can also be used to regulate the expression of genes that are, for instance, n.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Genetic use restriction technology (GURT) refers to genetic switch mechanisms that control the expression of value-added traits or reproductive viability in newly developed agricultural plant and animal varieties. The potential to develop agricultural seed that produces non-viable offspring led to the term 'terminator' technology. Recent patent applications have described various approaches to achieving such control although the technology has not yet been commercialised. Two types of GURT mechanisms have so far been developed: V-GURTs, which produce sterile seeds; and T-GURTs that only exhibit their added traits if treated with a specific chemical inducer.

In 2001, this article's authors carried out a study of the potential impacts of GURTs, at the request of the Food and Agriculture Organization of the United Nations (FAO). An article in Monitor No. 48 summarized recent developments in the field of GURTs and its potential effects on agro-biodiversity. The current article examines the potential economic consequences of GURTs. These are summarized in terms of benefits, costs and the risks involved for various groups.
Three reasons lie behind the development of GURTs. First, the technology may provide a biological means to strengthen intellectual property protection on newly developed agricultural crop varieties or animal breeds. By controlling access to a necessary inducer compound, breeding companies could restrict farmers or competing breeders from reproducing their innovation. Second, GURTs could be used to contain transgenes in genetically modified varieties, thus helping to respond to biosafety concerns. Third, GURTs could be a tool of 'precision agriculture' in which certain traits, such as stress response or vegetative development, are turned on or off by the farmer, precisely when needed. The desire to tighten the protection on innovations raises the most important issues in terms of economic effects and policy responses.

Plant breeders have until now focused their activity on the introduction and recombination of genes. GURTs will allow them to work on the expression (or the non-expression) of genes at any given stage of crop development or in any generation.

Some potential applications of GURTs could be:

increased production of specific molecules;

regulation of the expression of resistance genes, so that resistance be expressed only when necessary;

limitation of cross-pollination with other varieties, landraces or wild relatives; and

improved protection of intellectual property rights (see section 6.2, below).

GURTs are subject to an intense debate, in particular at the CBD level. The debate is highly emotional and focuses on impact of GURTs on biodiversity, food security and farmers' rights. If looked at scientifically and objectively, it is obvious that GURTs could provide solutions to some specific problems, and there is no sound scientific reason to call for a general ban on these technologies. Each country should have the right to decide whether or not to use these technologies, and to define possible limits of utilization

Conclusion
There is not yet enough information available to allow a detailed assessment of the potential economic and socioeconomic impacts of GURTs. The technology may offer considerable incentives for increased private sector innovation in the agricultural breeding sector, but with a skewed distribution of benefits and costs. On balance, the development implications of GURTs give cause for concern, particularly from the perspective of the more vulnerable and marginalized farmers. As with many technological innovations, richer farmers and richer farming countries are likely to reap most of the benefits. Compared to many previous 'advances', wider diffusion is explicitly precluded through the GURT mechanism itself. Outright prohibition of GURTs may appear to be desirable for many developing countries, given the potential risks, but may be quite difficult from a legal point of view. Eventually the possibilities might only be known through a process of WTO dispute resolution. However, there is scope for developing countries to elaborate appropriate regulatory measures to minimise both costs and risks.

About Author / Additional Info:
Ph.D. Scholar, Department of Genetics and Plant Breeding, UAS, GKVK, Bangalore-65

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 1800



Additional Articles:
•   Are You at Risk For Diabetes?.
•   Siro Clinpharm Pvt Ltd - History, Corporate Timeline and Services
•   Application of Genetic Engineering in Bioremediation: Deinococcus Radiodurans
•   Genetic Information- Storage and Retrieval

Latest Articles in "Agriculture" category:
•   Use of Biotechnology in Agriculture
•   Plant Based Edible Vaccine
•   Genetically Modified Food - Yes or No?
•   Agricultural Biotechnology - Definition and Various Products
•   Career Opportunities in Agriculture Science
•   Synthetic Seed Production and Application
•   Role of Biotechnology in Agriculture | Various Agricultural Technologies
•   Biofortification - A Technique Used in Agriculture
•   Biotechnology in Agriculture Development
•   Biotechnology in Animal Feed and Feeding
•   Biofertilizers: Types, Benefits and Applications
•   Genetically Modified Food - Advantages and Disadvantages
•   Genetically Modified Crops as Medicine
•   Cryopreservation and Conservation of Plant Genetic Material
•   Biotechnology and the Coconut
•   Biotechnology in Rice Farming
•   Bt Corn: Method, Mode of Action and Benefits
•   Safe Insecticides For the Environment
•   Plant Growth Promoting Substances


Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES : Agriculture   |   Applications   |   Bioinformatics   |   Biotech Products   |   Biotech Research   |   Biology   |   Careers   |   College / Education   |   DNA   |   Environmental Biotech   |   Genetics   |   Healthcare   |   Industry News   |   Issues   |   Nanotechnology   |   Others   |   Stem Cells   |   Press Release   |   Toxicology  

| Disclaimer/Privacy/TOS | Submission Guidelines | Contact Us