Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

In Planta Strategies for the Development of Transgenic Plants

BY: Dr. Rohini Sreevathsa | Category: Agriculture | Submitted: 2014-05-30 06:49:34
       No Photo
Article Summary: "The article explains the importance of non-conventional, tissue culture-independent in planta transformation strategies for the development of transgenic plants.."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

In planta strategies for the development of transgenic plants
Authors: Rohini Sreevathsa *, Basavaprabhu L. Patil, and Monika Dalal
National Research Centre on Plant Biotechnology, Pusa, New Delhi-110012

*Corresponding Author E-mail:

Plant biotechnology has gained considerable importance and is vital for various crop improvement programmes. It has great prospective to enhance crop productivity through increasing resistance to diseases, pests and environmental stresses. Crop improvement through transgenic technology is one of the most impending and viable option in the recent times. Further, the powerful combination of genetic engineering and conventional breeding programmes permits introduction of useful traits into economically important crop species. Two important pre-requisites to develop transgenic plants is the susceptibility to Agrobacterium and the ability to regenerate. Not all plants are amenable to regeneration. Such plants are called as 'difficult to regenerate' or 'recalcitrant species'. Many economically important crop species like cotton, pigeon pea, cassava, groundnut etc fall under this group. To overcome the lag that these species face for crop improvement, alternate approaches have been developed for genetic transformation. These are called as the In Planta transformation protocols. The strategy was initially conceptualized in Arabidopsis when scientists demonstrated that transgenics with stably integrated transgenes could be developed by following Agrobacterium-mediated transformation by vacuum infiltration of flowers and floral dip (Feldmann and Marks, 1987; Betchold et al., 1993). Since then various In Planta transformation strategies have been developed and validated for stable integration. These strategies can be potential alternatives for the cumbersome regeneration-based strategies that are generally followed. Different explants have also been used for transformation like, seeds, apical meristem, fruits etc (Manoj Kumar et al., 2014).

One of the promising targets for In Planta transformation has been the shoot apical meristem. There have been several reports demonstrating the successful transfer and inheritance of transgenes using this strategy (Rohini and Rao, 2000; 2001; Manjulatha et al., 2014). The apical meristem-targeted strategy involves In Planta inoculation of embryo axes of germinating seeds with Agrobacterium and allowing them to grow into seedlings ex vitro. Since differentiating cells are targeted, the plants developed in the T0 generation are chimeric, and stable transformants are obtained in the T1 generation. Crop-specific protocols for transformation with suitable selectable markers for efficient screening of T1 plants to identify stable transformants have been developed following this strategy. In several crop species (cotton, pigeon pea, groundnut) besides reporter genes, transgenics with improved agronomic traits were also developed. However, the major crux for the success of the strategy lies in the stringent screening of the T1 generation plants for the identification of the putative transformants. Various selectable marker genes coding for herbicide resistance, antibiotic resistance can be used for this purpose. These stringent screening methods not only select the transformants but can also help in the identification of high expressing transformants based on the selection pressure.

Therefore, uniqueness of the In Planta transformation technology is, (a) it is genotype independent, (b) able to generate transgenics in recalcitrant local crops, (c) has the ability to generate large number of transgenic events.

These methods can be effectively used in any of the crop species, provided it is susceptible to Agrobacterium infection. Incorporation of such methods of gene transfer will accelerate crop improvement.


1. Feldmann K. A and Marks M. D (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208: 1-9

2. Betchold N., Ellis J and Pelletier G (1993) In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci. 316: 1194-1199.

3. Manoj-Kumar Arthikala, Kalpana Nanjareddy, Miguel Lara, Rohini Sreevathsa (2014). Utility of a tissue culture-independent Agrobacterium-mediated In Planta transformation strategy in bell pepper to develop fungal disease resistant plants. Sci horticulturae 170: 61-69.

4. Rohini V. K. and Rao K. S (2000). Transformation of peanut (Arachis hypogaea L.): A non-tissue culture based approach for generating transgenic plants. Plant Sci., 150(1): 41-49.

5. Rohini V. K. and Rao K. S (2001). Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci., 160 (5): 883-892.

6. M. Manjulatha, Rohini Sreevathsa, A. Manoj Kumar, Chinta Sudhakar, T. G. Prasad, Narendra Tuteja and M. Udayakumar. (2014) Overexpression of a Pea DNA Helicase (PDH45) in Peanut (Arachis hypogaea L.) Confers Improvement of Cellular Level Tolerance and Productivity Under Drought Stress. Molecular Biotechnology. 56:111-125.

About Author / Additional Info:
I am a Senior Scientist at National Research Centre on Plant biotechnology, IARI campus, Pusa. My major research interest is in the field of development of transgenics for biotic stress tolerance

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 3498

Additional Articles:

•   Stem Cell Research Therapies | Past and the Future

•   Medicinal Uses of Cassia Auriculata

•   The Impact of Biomass in Sustainable Development Today

•   Journey to Bacillus Thuringiensis (BT) Crops

Latest Articles in "Agriculture" category:
•   Use of Biotechnology in Agriculture

•   Plant Based Edible Vaccine

•   Genetically Modified Food - Yes or No?

•   Agricultural Biotechnology - Definition and Various Products

•   Career Opportunities in Agriculture Science

•   Synthetic Seed Production and Application

•   Role of Biotechnology in Agriculture | Various Agricultural Technologies

•   Biofortification - A Technique Used in Agriculture

•   Biotechnology in Agriculture Development

•   Biotechnology in Animal Feed and Feeding

•   Biofertilizers: Types, Benefits and Applications

•   Genetically Modified Food - Advantages and Disadvantages

•   Genetically Modified Crops as Medicine

•   Cryopreservation and Conservation of Plant Genetic Material

•   Biotechnology and the Coconut

•   Biotechnology in Rice Farming

•   Bt Corn: Method, Mode of Action and Benefits

•   Safe Insecticides For the Environment

•   Plant Growth Promoting Substances

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us