Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Induced Systemic Resistance (ISR)

BY: Dr. Priyanka Chandra | Category: Agriculture | Submitted: 2016-11-28 01:08:18
       No Photo
Article Summary: "Plant-growth-promoting rhizobacteria (PGPR) colonize the rhizosphere of many plant species and confer beneficial effects and also elicit physical or chemical changes related to plant defense, this mechanism is known as Induced Systemic Resistance (ISR)..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Induced Systemic Resistance

Several researches have shown that soil microorganisms can ameliorate abiotic stresses very effectively in various crops. Along with, if these soil microorganisms have the capability to promote growth, they become more beneficial. Plant-growth-promoting rhizobacteria (PGPR) colonize the rhizosphere of many plant species and confer beneficial effects and also elicit physical or chemical changes related to plant defense, this mechanism is known as “induced systemic resistance” (ISR).

According to the studies, ISR elicited by PGPR has suppressed several plant diseases caused by a range of pathogens in both the greenhouse as well as on field trails. Yang et al. (2009) proposed the term ‘induced systemic tolerance’ (IST) for PGPR which induces physical and chemical changes in plants that result into enhanced tolerance and resistant to abiotic stress. These include tolerance to drought, salt, water stress and nutrient deficiency. Azospirillum sp., Pseudomanas syringae, P. fluorescens, Bacillus sp, has been reported to ameliorate salt and water stress while B. Polymyxa and Pseudomonas alacaligenes has been reported to reduce stress during nutrient deficiency.

ISR has been reported as one of the mechanisms by which PGPR reduces plant disease modulating the physical and biochemical properties of host plants. The first studies on ISR were carried out by van Peer et al. (1991). In this study, non-pathogenic Pseudomonas spp. was inoculated in the roots of plant and observation was carried to see the trigger of a plant-mediated resistance response in plant parts. Since then, the ISR elicitation by PGPR as a bio-control method has been studied in many crops such as bean, tomato, tobacco, radish, cucumber and carnation. ISR is characterized by a specificity relationship between plant and PGPR species i.e. PGPR that produces ISR in one plant species may not do it in another. Several strains from Pseudomonas, Bacillus and Azospirillum genera are the major group of PGPR that have been described eliciting ISR response. Induced systemic resistance (ISR) are activated by certain microorganism molecules referred to as elicitors. This defence response is dependent on ethylene and jasmonic acid signalling in the plant.
Elicitors are the molecules which includes, Cell wall polysaccharides, flagella, salicylic acid, cyclic lipopeptides, siderophores, antibiotics, the signal molecule AHL or volatile compounds.

PGPR mitigate the effect of drought stress on plants by following mechanisms:
(a) The production of cytokinins causes the accumulation of abscisic acid (ABA) in leaves, which in its turn results in the closing of stomata.
(b) The production of antioxidants (e.g., the enzyme catalase) causes the degradation of reactive forms of oxygen, which neutralize the toxic effects of ROS in plant cells, reducing damage to cells and biomolecules to a minimum.
(c) The bacterial-produced ACC deaminase degrades the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC), by reducing the level of ethylene, the plant becomes more resistant to stress conditions.


1. van Peer, R., Niemann, G.J., Schippers, B., 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81, 728-734.
2. Yang Jungwook, Kloepper Joseph W. and Ryu Choong-Min., 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science Vol.14 No.1

About Author / Additional Info:
I am working as Scientist in ICAR-Indian Institute of Wheat and Barley Research . My specialization is in Agricultural Microbiology. The Co-author of the article is Poonam Jasrotia is agricultural entomologist in the same institute.

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 470

Additional Articles:

•   Genetics of Addiction

•   Potential Risks of Agriculture Biotechnology

•   Biosimilar - Pros, Cons, Global Status and Future

•   Cloning Vector For Plant Genes

Latest Articles in "Agriculture" category:
•   Use of Biotechnology in Agriculture

•   Plant Based Edible Vaccine

•   Genetically Modified Food - Yes or No?

•   Agricultural Biotechnology - Definition and Various Products

•   Career Opportunities in Agriculture Science

•   Synthetic Seed Production and Application

•   Role of Biotechnology in Agriculture | Various Agricultural Technologies

•   Biofortification - A Technique Used in Agriculture

•   Biotechnology in Agriculture Development

•   Biotechnology in Animal Feed and Feeding

•   Biofertilizers: Types, Benefits and Applications

•   Genetically Modified Food - Advantages and Disadvantages

•   Genetically Modified Crops as Medicine

•   Cryopreservation and Conservation of Plant Genetic Material

•   Biotechnology and the Coconut

•   Biotechnology in Rice Farming

•   Bt Corn: Method, Mode of Action and Benefits

•   Safe Insecticides For the Environment

•   Plant Growth Promoting Substances

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us