Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Use of Organotin Compounds in Agriculture

BY: Dr. Bipasa Sarkar | Category: Agriculture | Submitted: 2017-01-03 12:02:35
       No Photo
Article Summary: "The article describes about the new class of pesticides and its use in agriculture..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Use of organotin compounds in agriculture
Author: Bipasa Sarkar
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi-110012.
Email: bipasasarkar@yahoo.co.in


Organotin (IV) compounds are characterized by the presence of at least one covalent C-Sn bond. The compounds contain tetravalent Sn centres and based upon the number of alkyl (R) or aryl (Ar) moieties, they are classified as mono-, di-, tri- and tetraorganotins. The anion is usually fluoride, chloride, oxide, hydroxide, a carboxylate or a thiolate (Sarkar, 2012). Organotin compounds have variety of applications in agriculture and human health, though in recent years these have been circumscribed by environmental considerations. Their biological properties make them suitable to be use as antifouling paints on ships, in wood preservatives and as agricultural pesticides. The unique properties of organotin compounds as biocidal agents make them worthy of study in agriculture. The advantage of organotin compounds are the high fungicidal activity and the toxicity to insect pests (Lewis and Hedges, 1959). In the early 1950s, Vander Kerk and Lujten, systematically discovered the high fungicidal activity of tributyl- and triphnyl-tin compounds (Vander Kerk and Luijten, 1954). However, later in the early 1960s, the first organotin compound to reach commercialization in agriculture were triphenyltin acetate (Brestan, Hoechst A.G) and triphenyltin hydroxide (Duter, Phlips Duphar N.V), both of which were widely used to combat a number of fungal diseases in various crops such as potato blight, leaf spot on sugar beet and celery, rice blast as well as coffee leaf rust. Subsequently several organotin based compounds were commercially used as pesticide in Agriculture. For an example, a third triphenyltin compound, the chloride (fentin chloride: Brestanol) was also commercially used in agriculture by Hoechst. Similarly, Dow, USA developed the tricyclohexyltin hydroxide (cyhexatin: Plictran) which was highly effective in the control of phytophagous mites. Subsequently, two further organotin miticides were introduced e.g. bis(trineophy1tin) oxide (fenbutatin oxide: Vendex or Torque) by Shell, USA and tricyclohexyltin- 1,2,4-triazole (azocyclotin: Peropal) by Bayer, USA. The efficiency of fungicidal property was also influenced by the nature of the organic group present in organotin compounds. For an example, the fungicidal activity of a group of Ph3SnX compounds was highest when X= NCO or NCS. Apart from the use as fungicide, organotin compounds have several other pesticidal properties. The trimethyl- and triethyl-tin derivatives had high toxicity to insects and mammals, the tripropyltins to gram-negative bacteria, and the tributyltins to the gram positive bacteria and fungi (Sijpesteijn et al, 1969). The tricyclohexyl- and trineophyl- tin compounds are effective acaricides. The nonpermanent nature of the toxicity of the organotin compounds is of great potential interest for two reasons. Firstly, these compounds ultimately decompose under the action of light and air into harmless inorganic tin and there is therefore no danger of the residual contamination of soil, water etc so that crops either cannot grow or, if they do, contain undesirable amounts of toxic substances. As a consequence, elemental tin disappears from living matter. Secondly, it is toxic to fungi and other pests when applied but later decompose into inorganic tin within a few days and leave only harmless residues on the crops when harvested. On the debit side, few organotin compounds such as crude trialkyltin, are found to be the only compound of this group which are toxic to both fungi and plants. Therefore, the challenge is to develop new organotin compounds which will be selectively toxic to the pests and not to the plants. Although, it was demonstrated that fungicidal and phytotoxicity did not always run parallel (Sarkar et al, 2010, 2011). It is noteworthy to say that the aim of a scientist should be to reduce the phytotoxic nature of organotin compound to make them suitable for agricultural use by proper formulation. Perhaps more promising still is the possibility of preparing functionally substituted organotin compounds.

References:

Sarkar B (2012) Synthesis of new organotin (IV) derivatives of thio-semicarbazides and S, N, O containing related legends, characterization and studies on the biocidals properties of the new compounds with special reference to the agricultural applications. Ph.D. thesis. North Bengal University, West Bengal.

Lewis WR and Hedges ES (1959) Applications of Organotin Compounds. Metal Organic Compounds, Advances in chemistry, ACS, Washington, DC. Chapter 17, 23: 190–203,

Vander Kerk GJM, Luijten JGA (1954) Investigations on organo-tin compounds. III the biocidal properties of organo-tin compounds J. Appl. Chem. 4: 314-319.

Sijpesteijn AK, Luijten JGA, Vander Kerk GJM. (1969) in: ‘ Fungicides, An Advanced Treatise’, Ed. Torgeson DC, Academic Press, New York, Vol. 2 p.331.

Sarkar B, Choudhury AK, Roy A, Biesemans M, Willem R, Ng SW and Tiekink ERT (2010). Synthesis, characterization, crystal structure analysis, and anti-fungal and phytotoxicity activities of diorganotin compounds derived from dihalo-substituted [(2-hydroxyphenyl) methylideneamino] thiourea. Applied Organometallic Chemistry. 24:842-852.

Sarkar B, Choudhury B, Sen Sarma M , Kamruddin SK, Choudhury AK and Roy A. (2011). Potentiality of organotin (IV) compounds in the control of foliar blight disease of wheat (Triticum aestivum) caused by Bipolaris sorokiniana. Archives of Phytopathology and Plant Protection 44: 1754-1769.



About Author / Additional Info:
I am working as a Research Associate in the Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New-Delhi-110012

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 256



Additional Articles:

•   Biosensors: On-line Measurements and Continuous Operations

•   Blue Eye Mutation: Inheritance From a Single Ancestor

•   Integrated Nutrient Management for Improvement of Yield and Quality of Vegetables

•   Yeast Artifical Chromosomes (YACs) and their Applications




Latest Articles in "Agriculture" category:
•   Use of Biotechnology in Agriculture

•   Plant Based Edible Vaccine

•   Genetically Modified Food - Yes or No?

•   Agricultural Biotechnology - Definition and Various Products

•   Career Opportunities in Agriculture Science

•   Synthetic Seed Production and Application

•   Role of Biotechnology in Agriculture | Various Agricultural Technologies

•   Biofortification - A Technique Used in Agriculture

•   Biotechnology in Agriculture Development

•   Biotechnology in Animal Feed and Feeding

•   Biofertilizers: Types, Benefits and Applications

•   Genetically Modified Food - Advantages and Disadvantages

•   Genetically Modified Crops as Medicine

•   Cryopreservation and Conservation of Plant Genetic Material

•   Biotechnology and the Coconut

•   Biotechnology in Rice Farming

•   Bt Corn: Method, Mode of Action and Benefits

•   Safe Insecticides For the Environment

•   Plant Growth Promoting Substances



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us