Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Injuries to Microbes

BY: Sonali Bhawsar | Category: Applications | Submitted: 2011-02-11 03:11:18
       Author Photo
Article Summary: "The extent of injury depends on susceptibility of microbe to environmental conditions such as temperature, pressure or pH and physiological state (old, growing or resting) of the cell. On the basis of structural components and metabolic processes, various mechanisms of cell injury are known in microorganisms. Injury to microbes .."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Injuries to microbes

Microorganisms live in dynamic environment and are constantly exposed to variable conditions. During adaptive phases of survival in such environments; microbial cell is prone to injuries at cellular and genetic level. Microbial damage or injury is caused by external natural or artificial sources. Damage can occur by many means such as sudden exposure to physicochemical parameters or by various antimicrobial agents. The extent of injury depends on susceptibility of microbe to environmental conditions such as temperature, pressure or pH and physiological state (old, growing or resting) of the cell. On the basis of structural components and metabolic processes, various mechanisms of cell injury are known in microorganisms. Injury to microbes generally results in death but still some types of damages are repairable.

Injury to cell wall: Damage to cell wall is caused by synthetic surfactants and biosurfactants, detergents or soaps, antibiotics and enzymes. Surfactants lower surface tension of medium in which microorganisms are growing. It results in emulsification of lipids of cell wall followed by their complete dissolution in aqueous solution. Hydrolytic enzymes like pectinase, lysozyme, cellulase, chitinase, protease and laminarinase also hydrolyze the cell wall. Antibiotics such as penicillins, cephalosporins, bacitracin and vancomycin inhibit precursors of cell wall synthesis and hence the formation of cell wall. Damaged cell wall leads to osmotic rupture and subsequent collapse of cell membrane. Cell walls are also damaged by ultrasonic sound waves and electric current which create gas bubbles in growth medium. The collapse of bubbles release gases and create high pressure resulting in rupture of cell wall, lysis and liberation of cellular constituents. One more mechanism is protein coagulation or denaturation by which cell wall is damaged. Denaturants or coagulants like alcohol and derivatives or high temperature are the agents which alter native protein configuration. Protein configuration is essential for normal functioning of microbial cell. Cell lysis and death is the ultimate result of cell wall injury and is always irreversible.

Injury to cytoplasmic membrane: Cell membrane or cytoplasmic membrane is injured by antibiotics like polymyxin, nystatin and gramicidin, surfactants, phenolic derivatives and quaternary ammonium salts. They often dissolve the membrane proteins and lipids resulting in loss of membrane integrity. Such damage to membrane causes destruction of permeability barrier followed by cell death.

Inhibited metabolism: Metabolic processes, both anabolism and catabolism are enzyme catalyzed reactions. Many enzyme inhibitory agents like sulfonamide drugs and chemical oxidants are known which disrupt normal metabolic activities of microbial cell. For example, cyanide is potent inhibitor of enzyme cytochrome oxidase, an important enzyme of oxidative phosphorylation. Arsenic compounds inhibits enzymes of tricarboxylic acid cycle (TCA) while as oxidising agents like potassium permanganate and mercury destroy active sulfhydril (-SH) groups of many hydrolases and oxidoreductases.

Injury to nucleic acids: Damage to nucleic acids is caused by antibiotics and electromagnetic radiations. Antibiotics like streptomycin, chloramphenicol rifampicin, erythromycin and tetracycline are potent inhibitors of enzymes of nucleic acid and protein synthesis. They are also mutagenic agents and mutations induced by them are irreversible. Nonionizing ultra violet (UV) radiation is usually absorbed by nucleic acids. It induces abnormal structures or base dimerization (thymine dimer, T=T) in DNA. These structures interfere in the replication of DNA. UV radiation is lethal to microbial spores and their germination; it is also the most common cause of spontaneous mutations in microbial population. The interesting feature of UV induced injury is its repair mechanism. All the microorganisms express and apply this 'reversal of DNA damage' mechanism whenever their DNA is injured. Repair takes place in presence of light and is known as photoreactivation. Light independent or dark repair also exists in some microbes. Light dependent enzyme or PRE (photoreactivation enzyme) removes thymine dimmers and restores normal DNA structure. Dark repair involves a set of enzymes, nuclease, polymerase and ligase. Endo and exonuclease excise damaged segment of DNA, polymerase replace excised regions by copying the undamaged DNA strand and ligase fills the gap by joining the fragments.

The studies regarding microbial injuries forms the basis of mechanism of action of microbicidal, microbistatic physical and chemical agents of different sterilization processes.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 4915



Additional Articles:

•   Diacetylphloroglucinol Producing Rhizobacteria in Plant Defense

•   Arsenic Poisoning - Effects on Human Health

•   Gene Silencing and Its Applications

•   Nanotechnology in Bioremediation




Latest Articles in "Applications" category:
•   Flavor Biotechnology: Part -1

•   Flavor Biotechnology: Part -2

•   Genetic Engineering Extended the Shelf-life of Fruits

•   Biomedical Informatics - From Cells to Populations in the IT Way

•   The Concept of Biotechnology: Understanding Various Applications/Uses

•   In Vitro Fertilization Procedure - Applications, Advantages and Disadvantages

•   Fluorescence-Activated Cell Sorting

•   Directed Evolution

•   Fermentation, and its Control

•   Advanced Fermentation Control Strategies

•   Methods of Purification of Enzymes

•   Extremophilic Microbes - Organisms Living in Extreme Conditions

•   Colorful Bacteria

•   Importance of Phytoremediation

•   Conservation of Microbes

•   Sewage Bacteria - Strictly Anaerobic, Aerobic and Facultative bacteria

•   Microbial Growth Substrates

•   Asepsis and its Importance

•   Sample Preparation For Microscopy



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us