Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Production of Fermentable Sugar from Lignocellulosic Biomass

BY: Sumit Kumar Dubey | Category: Applications | Submitted: 2015-11-06 01:56:20
       No Photo
Article Summary: "Lignocellulosic biomass (LCB) could be used as renewable and sustainable source for production of reducing sugars. These sugars can further be converted into different kinds of value added products including bio-fuels, butanol and organic acid via microbial fermentation. .."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Lignocellulose (LC) is the most abundantly available biomass in plant community. This can potentially be used as cheap substrate for the production of fermentable sugar via microbial enzymatic hydrolysis. Lignocellulosic biomass (LCB) includes; mainly, agricultural wastes e.g. wheat straw, rice husk, sugarcane baggage, maize and corn stalks. These LCBs contains 35- 50% cellulosic fraction, 25 - 30% hemicelluloses and 20 - 25% lignin. The cellulosic biomass present inside LCBs, could be converted into different value added products such as; Bio-fuel (Ethanol, hydrogen and methane), Butanol and organic acids (e.g. Citric acid and lactic acid).

LC is building block of plant cell wall that consists following:

Lignin; polymer of phenyl-propane unit,

Hemicelluloses; consists pentose and hexose sugar residue (Hetero-polymer and branched), and

Cellulose; consists glucose unit (Homo-polymer and un-branched).

Structurally cellulosic fraction closely bound within lignin net. This Lignin contains three cross-linked aromatic alcohols namely; coniferyl, sinapyl and p-coumaryl. These aromatic polymers prevent microbial enzymatic attack on cellulosic fraction of LC. Thus lignin considered as main obstacle for the efficient bio-utilization of cellulose from lignocellulosic biomass.

To overcome this limitation, Pretreatment is an option to remove lignin fraction from LCB. This results the significant availability of cellulosic fraction for microbial enzymatic attack. When microorganism grows on cellulose (supplemented as a substrate), they release cellulase enzyme to breakdown cellulose to its monomer (D-Glucose). This sugar further used for the production of value added products via fermentation.

Cellulose is crystalline, insoluble and fibrous polysaccharide composed of repeating (1, 4)-D-glucopyranose (simply we can say Glucose) units, attached by Β-1,4 linkages. Most of Bacterial and fungal consortia produced enzyme cellulase that potentially degrade cellulose into its monomer sugar. Cellulase enzymatic system include three different enzyme, (1) Exo-Β-1, 4-glucanases (EC, (2) Endo-Β-1, 4-glucanases (EC, and (3) Β-1, 4-glucosidase (EC These enzymes synergistically participate on sequential breakdown of cellulose to an utilizable energy form (like glucose or fructose). The endo-Β-1,4-glucanases randomly hydrolyzes the Β-1,4 bonds in the cellulose molecule, and the exo- Β-1,4-glucanases produce a cellobiose (small chain of 1,4-D-glucopyranose units) unit. Finally, the cellobiose is converted to glucose by Β-1, 4-glucosidase.

Research review revealed that wide variety of microbial strains; especially, fungus and bacterial, as potential cellulose degradation. Fungal strain Trichoderma Reesei, one of the potential cellulase producing strain and for this reason, T. reesei have been used for the commercial production of cellulases. Aspergillus niger, Phanerochaete chrysosporium and Gloeophyllum trabeum were also reported for efficient cellulase production. Among bacterial consortia, Cellulomonas, Pseudomonas, Baccilus and the Actinomycetes were studied for cellulase production and optimization. Aforementioned microorganisms reported as potential strains that can potentially be able to convert pretreated LCBs to utilizable sugars. It could be further used for production of value added products (e.g. Bio-fuel, alcohols and acids).

Beside this, there are still lots of barriers towards effective utilization of LCBs, like;

1. Enhancement cellulose accessibility for microbial strain via pretreatment,

2. Enhancement of saccharification (The hydrolysis of complex polysaccharides to fermentable sugars) efficiency,

3. Dark fermentation/Photo fermentation optimization by redirecting metabolic pathway, metabolic engineering of microbial strains, stimulate enzyme activity involved in biomass conversion of desired value added products.


1. Apun K, Jong BC and Salleh MA. (2000). Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbilo., 46: 263-267.
2. Duff SJB and Murray WD. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Tech., 55: 1-33.
3. Ekperigin M. M. (2007). Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. African Journal of Biotechnology., 6: 28-33.
4. Esterbauer H, Steiner W, Labudova I, et al. (1991). Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol., 36: 51-65.
5. Iqbal HMN, Kyazze G and Keshavarz T. (2013). Advances in valorization of lignocellulosic materials by biotechnology: An overview. Bio Resources., 8: 3157-3176.
6. J. K. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J. (2008). Fermentative butanol production by clostridia. Biotechnology and bioengineering., 101: 209-28.
7. John RP, Nampoothiri KM, Pandey A. (2006). Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry., 41: 759-763.
8. Jones DT and Woods D R. (1986) Acetone-Butanol Fermentation Revisited. Microbiological reviews, 50: 484-524.
9. Jonsson et al., (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels., 6:16.
10. Kumar R, Singh S, Singh OV. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol., 35: 377-91.
11. KW H. "Lignochemicals. Experientia," Industrial biotechnology, 38: 176-189, 1982.
12. Mabee WE, Gregg DJ, Saddler JN. (2006) Assessing the emerging bio-refinery sector in Canada. Appl. Biochem. Biotechnol. 121-124: 765-778.
13. Nakamura K, Kappamura K. (1982). Isolation and identification of crystalline cellulose hydrolyzing bacterium and its enzymatic properties. J Ferment Technol., 60: 343-8.
14. Perez J, Munoz-Dorado J, de la Rubia T, Martinez J. (2002). Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int Microbiol., 5: 53-63.
15. Rasmussen ML, Shrestha P, Khanal SK, Pometto III AL, Leeuwen van J. (2010). Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol., 101: 3526-33.
16. Shrestha P, Rasmussen M, Khanal SK, Pometto III AL, Leeuwen van J. (2008). Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agr Food Chem., 56: 3918-24.
17. Vandenberghe LPS, Soccol CR, Pandey A, Lebeault J-M. (2000). Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technology. 74: 175-178.

About Author / Additional Info:
Research Scholar
Department of Biotechnology,
Research Interest: Bio-fuels

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 994

Additional Articles:

•   Human Insulin and Recombinant DNA Technology

•   Clinical Data Management - Guidelines and Importance

•   In-vitro Designing of SiRNA

•   Microbiological Testing and Evaluation

Latest Articles in "Applications" category:
•   Flavor Biotechnology: Part -1

•   Flavor Biotechnology: Part -2

•   Genetic Engineering Extended the Shelf-life of Fruits

•   Biomedical Informatics - From Cells to Populations in the IT Way

•   The Concept of Biotechnology: Understanding Various Applications/Uses

•   In Vitro Fertilization Procedure - Applications, Advantages and Disadvantages

•   Fluorescence-Activated Cell Sorting

•   Directed Evolution

•   Fermentation, and its Control

•   Advanced Fermentation Control Strategies

•   Methods of Purification of Enzymes

•   Extremophilic Microbes - Organisms Living in Extreme Conditions

•   Colorful Bacteria

•   Importance of Phytoremediation

•   Conservation of Microbes

•   Sewage Bacteria - Strictly Anaerobic, Aerobic and Facultative bacteria

•   Microbial Growth Substrates

•   Injuries to Microbes

•   Asepsis and its Importance

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us