Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

GWAS - The New Age of Genomic Studies

BY: Sandhya Anand | Category: Bioinformatics | Submitted: 2011-06-27 03:32:51
       No Photo
Article Summary: "GWAS stands for Genome Wide Association Studies. With the availability of Human Genome sequence, Genome Wide Association Studies are being increasing used to explore the association between genotypic variations and phenotypical characters. The article explore the concept, and tools associated with GWAS..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

GWAS stands for Genome Wide Association Studies. They are research studies conducted on entire human genome for analysis of genetic variations. They are designed to find the associations between different genetic markers, observable phenotypes, and any disease conditions.

Such studies are relatively backed by the progress in sequencing technology and innovative genotyping methods. The number of polymorphisms discovered in humans has grown rapidly to 2 million SNPs today. Effective genotyping of other species are also being carried out.

However, the technology poses its own challenges and risks. Since the data analyzed is huge, this warrants novel methods in statistical analysis. Also software which can handle huge data effectively is increasingly being on demand. Add to this, the huge genetic variation among humans and the analysis poses further challenges.

The genetic contribution towards the aspects of aging, cognitive functioning, physical performance etc is also not been defined fully. The NIH defines GWAS as the study of genetic variation across the human genome. They are conducted to detect genetic associations with phenotypic characters. The structural differences among the humans are greater than the nucleotide sequence variations and hence the newer approaches integrate the structural aspects in addition to the sequence variations.

GWAS involves rapid scanning of genetic markers of sample population to detect the genetic variations associated with a particular phenotype/disease. Typically they require more number of subjects per trial since the genetic association with exact SNPs and variations are found to show very low odds ratio which is as low as 1.5. The level of significance needed to establish a causal link between the variable and signal is also high. The tests required to assess the significance are large and hence corrections needed are also high.

Process of GWAS

• Large number of individuals in both case and control groups. Usually they are made into groups based on some confounding variables like ethnicity, race etc. The groups are further stratified according to variables such as age, sex etc which can enhance the signal.
• Microarray based techniques are employed to detect Single Nucleotide Polymorphisms.
• Haplotypes are derived on the basis of such polymorphisms. Haplotypes are tightly linked alleles which are less susceptible to drastic variations over generations.
• Suitable Statistical techniques are employed to reduce false discovery rates and detect association signal.
• Mapping of association signals is then followed by studies to replicate the results.
• Finally, the results are interpreted to identify the biological function/variant to which the association can be linked. Exploratory studies are also done to detect the mechanism of association.

Tools for GWAS studies

1. IMPUTE is specifically designed for genotype imputation based on marker data such as HapMap.

2. dbGAP -It is a database of Genotypes and Phenotypes to archive and distribute the results of researches in which the interaction of genotype and phenotype has been examined.

3. SNPTEST employs Bayesian methods of analysis to detect SNPs associated with the binary or quantitative phenotypic traits. This takes the genotype variation into account

4. HAPGEN is another program which stimulate data in cohorts of case and control to derive the association of SNP markers with known Haplotypes.

5. MarkerInfofinder is used to detect SNP marker association based on function, location, gene/probe, and the type of disease. The search tool integrates the database with the available literature to get the best results.

6. Meta carries out metaanalysis studies on genetic diseases. However, due to the limited number of antagonistic publications and wide variations in the qualitative nature of data, such studies lack accuracy.

7. GENECLUSTER is software developed for detecting and finding the genomic location of causal loci in mapping and GWAS.

8. QCTOOL is used to detect SNP association inherent with Sample quality control.

9. CHIAMO is used in studies with multiple cohorts.

10. GTOOL can generate genotype data subsets and can be used to convert the file format for genotype data for importing data from one program to another.

11. SNP & Variation Suite is designed to conduct analysis on genomic data. The analysis options are wide including detection of allele frequency, P-value, Hardy-Weinberg Equilibrium, Signed correlation analysis, genotype counts etc.

12. Goldsurfer2 is an interactive kind of GWAS program to find out and highlight the focused research topics by arranging data in a hierarchal pattern. The data can also be linked to graphs and tables for ease of analysis. The software can import several datasets, merge them and analyze them without losing the significance. PCA techniques can also be employed.

There are still newer methods and tools used in GWAS. The challenging problem is in the filtering of noise from original data to improve accuracy. The new methods are aimed at improving the significance by combining one or more approaches with development of underlying statistical algorithms.

About Author / Additional Info:

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 3946

Additional Articles:

•   Steps in Microarray Data Analysis - Part I

•   Proliferating Demand For Probiotics

•   Remove Aflatoxin Contaminated Kernels from Peanuts

•   Litchi Based Land Use Technique for Low lying areas

Latest Articles in "Bioinformatics" category:
•   Career as Bioinformatician and Biostatistician

•   Expander: A Tool of Bioinformatics

•   Role of Bioinformatics in Drug Discovery

•   Importance and Applications of Bioinformatics in Molecular Medicine

•   Bioinformaticist vs. Bioinformatician - Definition, Differences and Career Outlook

•   Bioinformatics Application in Nanotechnology

•   How Bioinformatics Handles the Biological Data?

•   Application of Bioinformatics in Medicine

•   Prenatal Diagnosis via Bioinformatics Skills

•   Applications of Bioinformatics in Agriculture

•   Next Generation Sequencing Technologies: 454 Pyrosequencing

•   GenScan: Bioinformatics Software For Structure Prediction and Analysis of Gene

•   Pairwise Sequence Alignment For Sequence Similarity

•   Applications of Bioinformatics in Biotechnology

•   Introduction to Bioinformatics: Role of Mathematics and Technology

•   Why and How of Normalization in Microarray Data Analysis

•   Steps in Microarray Data Analysis - Part I

•   Steps in Microarray Data Analysis - Part II

•   Bilirubin Metabolism And its Role in Neonatal Jaundice

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us