Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

In Silico Designing of RNA Aptamers

BY: Shivani Sharma | Category: Bioinformatics | Submitted: 2012-12-08 20:06:13
       Author Photo
Article Summary: "RNA molecules are important cellular molecules and their aptamers are basically are in a wide use these days. Aptamers are peptide molecules that bind to a given specific target molecule. Understanding their basic mechanism, processes and creation of RNA aptamers is where the concept of in silico designing comes into the picture.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


RNA molecules are important cellular molecules and their aptamers are basically are in a wide use these days. Aptamers are peptide molecules that bind to a given specific target molecule. Understanding their basic mechanism, processes and creation of RNA aptamers is where the concept of in silico designing comes into the picture In silico designing of RNA aptamers has gained much achievement due to the use of easy to use and apply bioinformatics tool. These tools contribute to analysis of various aspects in the designing of RNA aptamers like tertiary structure prediction of RNA, protein folding, motif prediction, database search and structure analysis and design.

The databases basically provide a large source for the RNA molecule to be used. Various databases are available throughout the web which help in searching the suitable RNA molecule as per the researcher's need. RNAMotif is one such search tool that searches a database for RNA sequences that match a "motif" provided by the user which describes interactions of secondary structure. A term 'match is quite often used there which implies that the given sequence is capable of adopting the given secondary structure, however it is not intended to be predictive. RNAMotif is an extension of earlier programs rnamot and rnabob and is being widely accepted and used for the purpose it serves.

After that, the structure prediction tools come into the picture that provide basic facilities to design the tertiary structure of the desired RNA molecule. One of them is The Nucleic Acid Simulation Toolkit, also abbreviated as NAST. NAST is a knowledge-based coarse-grained tool for modelling structures of RNA molecules that produces a set of 3D structures. Also, to filter the generated decoy structures, it employs the use of sresidue-resolution experimental data for instance hydroxyl radical footprinting. The software satisfies the data and constraints provided by the users on the basis of following factors:

1. Primary sequence
2. Known or predicted secondary structure
3. Known or predicted tertiary contacts

Its basic functioning follows the following sequence of events: First, it uses an RNA-specific knowledge-based potential to generate large numbers of 3D structures that satisfy the constraints provided by the users. Then it filters these generated structures based on agreement to the available experimental data. As a result, it provides a model of the molecule which satisfies all the known residue-resolution data and also the constraints that has been provided by the user.

Another software that assists in design of RNA structures is BARNACLE. It is a single sequence tertiary structure production software and provides a Python library for the probabilistic sampling of those RNA structures that are compatible with a given nucleotide sequence and are RNA-like on a particular local length scale. Further, FARNA, much like BARNACLE, facilitates single sequence RNA structure prediction and utilises automated de novo prediction of RNA tertiary structures.
A web-based tool for RNA tertiary structure prediction is iFoldRNA that predicts RNA structures by exploiting a model of three beads/ nucleotide by application of molecular dynamics (MD) sampling. It utilizes REMD method or the replica exchange method for the prediction of tertiary structures. It need not require secondary structure inputs for the processing and then rapidly predicts structure of small RNAs that are typically <50nt in size.

Another software, RAGPools or RNA-As-Graph-Pools which is a web server for assisting the design of structured RNA pools used for the application of in vitro selection that suggests the method to build/construct RNA sequence/structure pools with user-specified properties or to be clearer, the parameters and constraints being fed by the user to the system. It provides assistance in analysing resulting distributions and provides a basic tool for designing structured RNA pools with specified target motif distributions and then analysing them. The organisation of RAGPools in RNA pool designer takes the follows sequence of events: first, the user inputs a target motif sequence, then the database takes care of the pie-calculated distribution, the engine linear optimizes them and then the result is obtained in the form of mixing matrix, starting sequence and weight. In a RNA pool analyser, the user inputs a mixing matrix and a starting sequence, the database takes care of the RNA-As-Graph, Engine provides pool generator and topology scanner and then finally, the output is received in the form of motif distribution.

Autodock and DOCK are other softwares that are useful in screening libraries of RNA molecules and possess an ability to dock compounds to RNA molecules. They are being extensively used to screen a library of small molecules in order to find a ligand that would perfectly bind to a specific protein or RNA receptor that has been provided or according to the other parameters.
The in silico designing of RNA aptamers is extensively increasing and the use of bioinformatics tools is rapidly increasing too. Nonetheless one can expect new achievements and discoveries in the future years with respect to the highly developing genomic tools.


About Author / Additional Info:
A Budding biotechnologist + writer from India.. Visit http://in.linkedin.com/pub/shivani-sharma/4b/91b/384 or refer cv.napping@gmail.com for more details.
Researcher ID- J-4200-2012

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (1 comments so far)

Comment By Comment
Patty
2014-05-26 09:26:23 792
Thanks. Just starting out on the bioinformatics front. This article gave me some perspective.

Leave a Comment   |   Article Views: 3263



Additional Articles:

•   Prenatal Diagnosis: Non-invasive and Invasive Techniques

•   Central Dogma - The Backbone of Molecular Biology

•   Compost Tea: An Organic Additive For Plant Health

•   Phytoremediation: 'Green Technology' For Extracting the Heavy Metals




Latest Articles in "Bioinformatics" category:
•   Career as Bioinformatician and Biostatistician

•   Expander: A Tool of Bioinformatics

•   Role of Bioinformatics in Drug Discovery

•   Importance and Applications of Bioinformatics in Molecular Medicine

•   Bioinformaticist vs. Bioinformatician - Definition, Differences and Career Outlook

•   Bioinformatics Application in Nanotechnology

•   How Bioinformatics Handles the Biological Data?

•   Application of Bioinformatics in Medicine

•   Prenatal Diagnosis via Bioinformatics Skills

•   Applications of Bioinformatics in Agriculture

•   Next Generation Sequencing Technologies: 454 Pyrosequencing

•   GenScan: Bioinformatics Software For Structure Prediction and Analysis of Gene

•   Pairwise Sequence Alignment For Sequence Similarity

•   Applications of Bioinformatics in Biotechnology

•   Introduction to Bioinformatics: Role of Mathematics and Technology

•   Why and How of Normalization in Microarray Data Analysis

•   Steps in Microarray Data Analysis - Part I

•   Steps in Microarray Data Analysis - Part II

•   Bilirubin Metabolism And its Role in Neonatal Jaundice



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us