Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Biomedical Engineering: Its Introduction and Sub-disciplinary Fields

BY: Muniba Safdar | Category: Biology | Submitted: 2011-02-18 09:43:32
       No Photo
Article Summary: "Information about biomedical engineering; its introduction and Sub-disciplines within biomedical engineering. Biomedical engineering is the use of engineering principles and methods to the medical field. Biomedical engineering work is basically about research and development. It crosses a broad range of sub-fields..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Biomedical (is related to the activities and applications of science to clinical medicine) engineering is the use of engineering principles and methods to the medical field. The convention of this field is to overcome the breach between medicine and engineering. For the improvement of healthcare monitoring, therapy and diagnosis, biomedical engineering combines the design and problem solving abilities of engineering with biological and medical sciences. It is a recently emerging field which emerges its peculiar disciplines with many other engineering fields. For example, an evolution being an interdisciplinary field is specialized among already-established fields and is common as a new field.

Sub-disciplinary fields of biomedical engineering:

Biomedical engineering work is basically about research and development. It crosses a broad range of sub-fields. Theses sub-disciplinary fields include;

• Bio-mechanics (is the branch of biophysics that deals with the mechanics of the human or animal body; especially concerned with muscles and the skeleton or the functioning of a particular part of a body).

• Bio-materials (is any matter, surface, or construct that interacts with biological systems).

• Bio-mechatronics (is an applied interdisciplinary science that aims to integrate mechanical elements, electronics and parts of biological organisms).

• Bionic (also known as biomimicry, biomimetics, bio-inspiration, biognosis, and close to bionical creativity engineering) is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology).

• Clinical engineering (is a specialty within Biomedical engineering responsible primarily for applying and implementing medical technology to optimize healthcare delivery).

• Bio-instrumentation (is the application of electronics and measurement principles and
techniques to develop devices used in diagnosis and treatment of disease).

• Bio-nanotechnology (usually refers to intersect between biotechnology and nanotechnology).

• Medical imaging (is the technique and process used to create images of the human body (or parts and function thereof) for clinical purposes (medical procedures seeking to reveal, diagnose or examine disease) or medical science (including the study of normal anatomy and physiology)).

• Cellular engineering (is a new field that addresses issues related to understanding and manipulating cell structure-function relationships).

• Tissue engineering (a sub-field of bio materials, It is the use of a combination of cells, engineering and materials methods, and suitable biochemical and physio-chemical factors to improve or replace biological functions).

• Genetic engineering or genetic modification (is the direct human manipulation of an organism's genetic material in a way that does not occur under natural conditions. It involves the use of recombinant DNA techniques, but does not include traditional animal and plant breeding or mutagenesis).

• Neural engineering ((also known as Neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties of neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs).

• Pharmaceutical engineering (is a branch of Pharmaceutical Technology that involves development, commercialisation and manufacturing components within the pharmaceuticals industry).

• System physiology (is the science of the mechanical, physical, bioelectrical, and biochemical functions of humans in good health, their organs, and the cells of which they are composed. Physiology focuses principally at the level of organs and systems).

• Rehabilitation engineering (is the systematic application of engineering sciences to design, develop, adapt, test, evaluate, apply, and distribute technological solutions to problems confronted by individuals with disabilities).

• Orthopaedic bioengineering (builds upon strong programs in biomechanics and biomaterials. The field embraces the study of joint function, prosthetic replacement, and a broad range of orthopaedic related research such as electrical stimulation effects on fracture repair, injury, repair, and regeneration of tendons and ligaments, and biomechanicial effects on bone cells).

Biomedical engineers have solved the problem for the patients that need organ transplants. Now they are researching on tissue engineering to create artificial organs. They have grown tracheas and jawbones from human stem cells. They have successfully grown artificial urinary bladders in laboratories and transplanted into human patients.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 7918



Additional Articles:

•   Cold Adaptation by Phosphate Solubilization and Plant Growth Promoting Bacteria

•   Commercial Production of Enzymes

•   Biological Control of Insect Pests

•   Crop Residue for Soil Cover: Constraints and Way Ahead




Latest Articles in "Biology" category:
•   Wonderful World of Microorganisms and Their Role in Human Life.

•   Molecular Biology Techniques

•   Process of Reproduction in Bacteria

•   Importance of Microorganisms in the Ecosystem

•   Starting From the Basics: DNA Extraction

•   Agrobacetium-Mediated Transformation Protocol

•   Sucrose Regulating Photosynthesis

•   Nitrogen Fixation: Genes Involved and the Infection Process

•   Functional Genomics: A Tool in Genetic Engineering

•   Plant Tissue Culture and Its Applications

•   Harmful Effects of Mold and Their Prevention

•   Gel Electrophoresis in Molecular Biology

•   Extraction of Phytochemicals

•   Applications of Thin Layer Chromatography

•   Beneficial and Harmful Bacteria

•   Calvin Cycle Regulation and Effect on Photosynthesis

•   How a Baby Develops Inside Mother's Womb: From an Embryo to a Child

•   Apoptosis (or cell suicide) : Process and Types

•   Neurotransmitters and its types



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us