Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Biophotonics: A Combination of Biology and Photonics and its Applications

BY: Muniba Safdar | Category: Biology | Submitted: 2011-02-14 12:03:55
       No Photo
Article Summary: "What is biophotonics? Biophotonics refers to detection, reflection, emission, modification, absorption, and creation of radiation from cells, organisms, biomolecular,tissues, and biomaterials..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

The word biophotonics is a combination of biology and photonics. As the word photonics indicates the science and technology like generation, use and detection of photons (a quantum of electromagnetic radiation; an elementary particle that is its own antiparticle), and lights quantum units. As we know the importance of electrons today in the field of information technology, it is believed that photons also play a similar vital role in future information technology. Photonics is basically interrelated with electronics (is the branch of physics that deals with the emission and effects of electrons and with the use of electronic devices).

Biophotonics has become the well-known broad term for all the techniques interrelated with biological items and photons. Biophotonics refers to detection, reflection, emission, modification, absorption, and creation of radiation from cells, organisms, biomolecular (is any organic molecule that is produced by a living organism, including large polymeric molecules such as proteins, polysaccharides, and nucleic acids as well as small molecules such as primary metabolites, secondary metabolites, and natural products), tissues, and biomaterials (is any matter, surface, or construct that interacts with biological systems).

Areas of Application:

Biophotonics application areas are in medicine, life sciences, agriculture, and environmental science and many other techniques. It can be used to study materials or biological materials with properties. These properties are similar to biological materials, i.e., on a macroscopic or microscopic scale.

Common applications include;

On the microscopic level:

Microscopy (is the technical field of using microscopes to view samples and objects that cannot be seen with the unaided eye (objects that are not within the resolution range of the normal eye))
Optical coherence tomography (is an optical signal acquisition and processing method. It captures micrometer-resolution, three-dimensional images from within optical scattering media (e.g., biological tissue))
Confocal microscope (is an optical imaging technique used to increase optical resolution and contrast of a micrograph by using point illumination and a spatial pinhole to eliminate out-of-focus light in specimens that are thicker than the focal plane)
The fluorescent microscope (is an optical microscope used to study properties of organic or inorganic substances using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption.)
Total internal reflection fluorescent microscope (is a type of microscope with which a thin region of a specimen, usually less than 200 nm, can be observed.)
On the macroscopic level:
Diffuse optical imaging and tomography or DOI and DOT (non-invasive method inside a scattering material an internal glitch is reconstructed).

In further details, biophotonics has various other microscopic techniques that are manipulated by optical tweezers (are a scientific instrument that uses a highly-focused laser beam to provide an attractive or repulsive force) and laser micro-scalpels (is a scalpel for surgery, cutting or ablating living biological tissue by the energy of laser light).

Beam lights: source for biophotonics

The light source used for biophotonics are beam lights. Although light emitting diode or LED's (Diode such that light emitted at a p-n junction is proportional to the bias current; colour depends on the material used), SLED's, or lamps play an imperative role. The wavelengths used in biophotonics are between 600 nm (UV) and 3000 nm (near IR).

In biophotonics, lasers play more significant role. Lasers have unique inherent properties like;

• Widest wavelength coverage
• Precise wavelength selection
• Highest focus ability
• Best spectral resolution
• Strong power densities
• Broad spectrum of excitation

These properties of lasers make them the most widespread light device for a wide-ranging spectrum of applications. Many other different laser technologies are found from a broad number of suppliers in the market today.

Gas lasers

Most important gas lasers used for biophotonics applications are Argon Ion laser and its wavelength are 457.8 nm, 476.5 nm, 488.0 nm, 496.5 nm, 501.7 nm, 514,5 nm, Kypton Ion laser and its wavelength are 350.7 nm, 356.4 nm, 476.2 nm, 482.5 nm, 520.6 nm, 530.9 nm, 568.2 nm, 647.1 nm, 676.4 nm, 752.5 nm, 799.3 nm, another important gas laser Helium-Neon laser and its wavelengths are 632.8 nm (543.5 nm, 594.1 nm, 611.9 nm).

There are some other commercial gas lasers that have minor importance in biophotonics such as carbon dioxide (CO2), carbon monoxide, oxygen, nitrogen, xenon-ions and metal vapor lasers.

Advantage of gas laser in biophotonics:

• Their fixed wavelength
• Their perfect beam quality
• Their low line-width/high coherence

Disadvantage of gas laser in biophotonics:

• High power consumption
• Generation of mechanical noise (due to fan cooling)
• Limited laser powers

About Author / Additional Info:

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 5498

Additional Articles:

•   Transcriptome - Aventure Into Crop Improvement

•   Different Delivery Systems of Trichoderma spp.

•   Stroke? No Way .. We Are Women!! How Can It Be?

•   Pre-harvest Fruit Bagging Technology for Apple [PDF]

Latest Articles in "Biology" category:
•   Wonderful World of Microorganisms and Their Role in Human Life.

•   Molecular Biology Techniques

•   Process of Reproduction in Bacteria

•   Importance of Microorganisms in the Ecosystem

•   Starting From the Basics: DNA Extraction

•   Agrobacetium-Mediated Transformation Protocol

•   Sucrose Regulating Photosynthesis

•   Nitrogen Fixation: Genes Involved and the Infection Process

•   Functional Genomics: A Tool in Genetic Engineering

•   Plant Tissue Culture and Its Applications

•   Harmful Effects of Mold and Their Prevention

•   Gel Electrophoresis in Molecular Biology

•   Extraction of Phytochemicals

•   Applications of Thin Layer Chromatography

•   Beneficial and Harmful Bacteria

•   Calvin Cycle Regulation and Effect on Photosynthesis

•   How a Baby Develops Inside Mother's Womb: From an Embryo to a Child

•   Apoptosis (or cell suicide) : Process and Types

•   Neurotransmitters and its types

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us