Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Polytene Chromosomes: Applications in Cytology and Taxonomy

BY: Chandra Kala | Category: Biology | Submitted: 2012-11-08 03:01:10
       No Photo
Article Summary: "Polytene chromosomes are a type of Giant chromosomes which were discovered by Balbiani. Polytene chromosome is formed due to replication of genetic material without cell division and mitotic synapsis of homologues chromosomes. Polytene chromosomes have wide application in the field of cytology, gene expression, evolution and sp.."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Balbiani (1881) discovered Polytene chromosome in the salivary glands of insect larva. Polytene chromosomes are a type of Giant chromosomes, which are formed due to replication of chromosomes without cell divisions called endomitosis. The strands of DNA are held together due to synapsis and forms structure which are bigger than normal chromosomes. The centromeres of all chromosomes form a highly condensed structure called chromocentre making arms of the chromosomes holding together as in case of Drosophila. In certain species of insects like mosquitoes, the chromocenter is not highly condensed and each arm is separated during the cytological preparations. A polytene chromosome occurs in tissues of salivary glands, malpighian tubules, and intestine of Dipteran insects. Polytene chromosomes are observed in Insects, Mammals and also in Plants.

Polytene chromosomes occur in cells which have to express more gene products. The cells having polytene chromosomes are polyploidy in nature. The number of strands in polytene chromosome varies and they are around 1024 strands in Drosophila due to 9 rounds of replications of each chromosome. Polytene chromosomes has specialized structures called puffs, which is an active gene expressing region. Puffs are dynamic in nature and depending on the different stages of organism and environmental stress, the size and position changes. Larger puffs are called Balbiani rings. The Chromosome synapsis is observed only in meiosis and in mitosis, chromosome synapsis is seen only in polytene chromosome, where homologues chromosomes are held together during process of polytinization. Polytene chromosomes express more gene products that are required for development and morphogenesis of the organisms. Usually the polytene chromosomes are present in insect's last larval stage where more proteins are required in pupal development. Polytinization helps the organism to conserve the energy during the development where the cells only increases the DNA content and cell division phase is eliminated, there by conserving the energy and time that is required in cell division as the development phase is shorter in insects.

The Drosophila polytene chromosome consists of 5 arms with one chromocenter. The diploid number of chromosomes in Drosophila is 2n=8. The first pair is allosome and the rest three are autosomes. The fourth chromosome is a short acrocentric chromosome and X chromosome is also an acrocentric and Y is heterochromatic sub meta centric and 2nd and 3rd autosomes are meta centric. During the process of polytinaization, all the centromeres of 4 chromosomes are fused to form chromocenter. The 5 arms of polytene chromosome in Drosophila are designated as 2L, 2R, 3L, 3R and X. Since the short arm of X chromosome is highly heterochromatin, it becomes part of chromocenter. The 4th chromosome has less euchromatin, hence this also becomes part of chromocenter. In males, the Y chromosome is also highly heterochromatin and become part of chromocenter. Therefore polytene chromosome of Drosphila has 5 arms from 8 chromosomes.

Polytene chromosomes have wide application in the field of cytology, gene expression, evolution and speciation. Due the size of the polytene chromosomes, chromosomal aberrations such as inversions, duplications, and deletions can be easily identified. The polytene chromosome arms when stained with dye have specific patterns called bands. The bands are developed due to euchromatin and heterchromatin nature of DNA. The light bands are the regions of euchromatin and dark bands are the region of heterochromatin. These bands are characteristic of each chromosome arms and also specific to individual species. Based on the banding pattern of polytene chromosome, the chromosomes are identified and due to its specific banding pattern species are identified.

The sub species identification is a major challenge in taxonomy, the banding pattern in the polytene chromosome helps in sub species identification as banding patterns of the chromosome arms are unique to each sub species. Further the bands helps in detecting chromosomal aberrations such as deletions and duplications. It is interesting to observe the chromosomal aberrations type inversions, where certain portion of DNA in one of the homologues chromosome is inverted and during mitotic synapsis in polytene chromosome, the inverted region form a loop which can be easily detected in microscopic observations. Further study of inversions has great importance in arthropods as the inversions are sometimes associated with speciation and insecticide resistance development. As the polytene chromosomes are large in size, gene identification with hybridization technique is much easier to view in microscope.

About Author / Additional Info:
An enthuiastic author

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (1 comments so far)

Comment By Comment
Om Prakash Ambasta
2016-12-23 21:35:08 1147
Very nicely explained in simple language. Useful for the biology students and teachers. You deserve special thanks. rnWith best wishes.

Leave a Comment   |   Article Views: 11641

Additional Articles:

•   A Brief Account of Tissue Culture

•   Understanding Genetic Disorders in Human Genetics

•   Polymerase Chain Reaction - Applications of the PCR Technology

•   Silver Staining- Developing Photogenic Gels!!

Latest Articles in "Biology" category:
•   Wonderful World of Microorganisms and Their Role in Human Life.

•   Molecular Biology Techniques

•   Process of Reproduction in Bacteria

•   Importance of Microorganisms in the Ecosystem

•   Starting From the Basics: DNA Extraction

•   Agrobacetium-Mediated Transformation Protocol

•   Sucrose Regulating Photosynthesis

•   Nitrogen Fixation: Genes Involved and the Infection Process

•   Functional Genomics: A Tool in Genetic Engineering

•   Plant Tissue Culture and Its Applications

•   Harmful Effects of Mold and Their Prevention

•   Gel Electrophoresis in Molecular Biology

•   Extraction of Phytochemicals

•   Applications of Thin Layer Chromatography

•   Beneficial and Harmful Bacteria

•   Calvin Cycle Regulation and Effect on Photosynthesis

•   How a Baby Develops Inside Mother's Womb: From an Embryo to a Child

•   Apoptosis (or cell suicide) : Process and Types

•   Neurotransmitters and its types

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us