Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Agricultural Biotechnology: From Green Revolution to Gene Revolution

BY: Dr. Suresh Kaushik | Category: Biotech-Research | Submitted: 2013-06-19 09:24:43
       Author Photo
Article Summary: "The gains in food production provided by the Green Revolution have reached their ceiling while world population continuous to rise. Agricultural biotechnology is that area of biotechnology involving application to agriculture. New developments in agricultural biotechnology are being used to increase the productivity of crops ...."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

The burgeoning global population and declining arable land necessitate sustainable food production systems and environmental conservation, especially in the developing countries. The world population tripled to six billion in the last century. The increased food production required to sustain this dramatic increase was met by the skills of plant breeders and farmers, mechanization and technogical innovation by the agrochemical industry.

The gains in food production provided by the Green Revolution have reached their ceiling while world population continuous to rise. This was one of the great technological success stories of the second half of the twenties century. Because of the introduction of scientifically bred, higher-yielding varieties of rice, wheat and maize beginning in the 1960s, overall food production in the developing countries kept pace with population growth. The benefits of the Green Revolution reached many of the world's poorest people. This provided high yielding seeds but led to the use of high amounts of fertilizer, water and pesticides. So this resulted in depletion of these resources, salination and falling outputs. This makes poor farmers dependent on agricultural chemicals and reduces the diversity of crops they plant. Thus, the Green Revolution led at first to rapid growth in productivity but has now created crops that are increasingly dependent on higher, more costly and less efficient doses of fertilizer and pesticide. These pesticides leave residues that linger on crops and soil, leach into ground water and streams, get magnified biologically and are an environmental concern.

Biotechnology refers generally to the application of a wide range of scientific techniques to the modification and improvements of plants, animals, and microorganisms that are of economic importance. Agricultural biotechnology is that area of biotechnology involving application to agriculture. In the broadest sense, traditional biotechnology has been used for thousands of years, since the advent of the first agricultural practices, for the improvement of plants, animals and microorganisms.

The application of biotechnology to agriculturally important crop species has traditionally involved the use of selective breeding to bring about an exchange of genetic material between two parent plants to produce offspring having desired traits such as increase yield, disease resistance and enhanced product quality. The exchange of genetic material through conventional breeding requires that the two plants being crossed are of the same, or closely related species and so it can take considerable time to achieve desired results. Modern biotechnology vastly increase the precision and reduces the time with which these changes in plant characteristics can be made and greatly increase the potential sources from which desirable traits can be obtained.

In the 1970s, a series of complementary advances in the field of molecular biology provided scientist with the ability to readily move DNA between more distantly related organisms. Today, this recombinant DNA technology has reached a stage where scientists can take a piece of DNA containing one or more specific gene from nearly any organism, including plants, animals, bacteria, or viruses, and introduction it into a specific species. The application of recombinant DNA technology frequently has been referred to as genetic engineering. An organism that has been modified, or transformed using modern techniques of genetic exchange is commonly refereed as a genetically modified organism (GMO). Plants that have been genetically modified using recombinant DNA technology to introduce a gene from either the same or a different species also are known as transgenic plants and the specific gene transferred is known as a transgene.

Ti plasmid of Agrobacterium tumefaciens, used as a workhorse for plant genetic engineering to shuttle foreign genes into plant cells. Several other approaches for delivering DNA to plant cells were also developed, including chemical methods and electroporation, microinjection, and ballistic methods. As monocotyledons plants are generally not amenable to transformation by Agrobacterium, these methods were particularly important for facilitating stable gene transfer to many of the major monocot crops.

There are many advantages to genetically modified crops over traditional and crossbred crops. Insertion of a carefully selected gene into a plant is safer than introducing thousands of genes at once, as commonly occurs during conventional crossbreeding. Traditional plant-breeding techniques can be very time-consuming. It sometimes takes up to 15 years or more before a new plant variety reaches the market. Furthermore, in traditional breeding, generally only closely related plant species can be used in cross breeding for the development of new varieties and hybrids. But genetic engineering enable scientists to breach the reproductive barriers between species. Through the use of Genetic Engineering technology genes from one plant, animal or microorganisms can be incorporated into an unrelated species, thus increasing the range of traits available for developing new plants.

During the last 25 years or so there has been a revolution in plant science, which has allowed the skills of the plant breeder to be supplemented by the application of plant biotechnology. This revolution has resulted from an increased understanding of how cells and organism work at the molecular, biochemical and physiological levels and also from the transfer of genes from one plant species to another, or from other organisms such as bacteria. Now and in the near future, the products of transgenic food biotechnology provide food quality improvements, which include better taste and healthier foods.

New developments in agricultural biotechnology are being used to increase the productivity of crops, primarily by reducing the costs of production by decreasing the needs for inputs of pesticide, herbicides and fertilizers. The application of agricultural biotechnology can improve the quality of life by developing new strains of plants that give higher yields with fewer inputs, can be grown in wider range of environments, give better rotations to conserve natural resources, provide more nutritious harvested products that keep much longer in storage and transport, and continue low cost food supplies to consumers. Further advances in biotechnology will likely result in crops with a wider range of traits such as corn, potato and banana as mini-factories for the production of vaccines and biodegradable plastics. In future, transgenic plants may serve as bioreactors for the production of protein pharmaceuticals. Genes have been identified that can modify and enhance the composition of oils, proteins, carbohydrates, and starch in food/feed grains and root crops. The new developments in gene technology also may be useful to solve problems in human care, agriculture, and the environment in countries like India. So, in future, such developments would not only directly benefit the consumer, but also would also afford farmers greater opportunities in choosing what crops to grow.

About Author / Additional Info:
Dr. Suresh Kaushik
Ph.D. Molecular Biology and Biotechnology
A Biotechnology Professional from India

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2978

Additional Articles:

•   Healthcare is a Holistic Approach Towards Living Life

•   Theories of Sex predominance | Women and Men Differences

•   The Impact of Biomass in Sustainable Development Today

•   The 23rd Chromosome Disease - Sex Linked Diseases

Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us