Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Artificial Blood - An Application of Recombinant DNA Technology

BY: Shivani Sharma | Category: Biotech-Research | Submitted: 2012-12-09 06:28:44
       Author Photo
Article Summary: "Blood, not only provides life, but is the key source of oxygen delivery to the tissues and organs within the body. Successful blood transfusions have saved many lives during conditions where most or whole blood of an organism has been wasted away due to some accident or other mishap. Transfusion of small amounts of blood is very.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Blood, not only provides life, but is the key source of oxygen delivery to the tissues and organs within the body. Successful blood transfusions have saved many lives during conditions where most or whole blood of an organism has been wasted away due to some accident or other mishap. Transfusion of small amounts of blood is very usual and doesn't experience any problems while large amount of blood transfusion can be a bit problematic. Since the whole blood content has a short shelf life span and there is always a possibility of the blood getting virally contaminated, scientists have taken a big step towards creating artificial blood which would be used in emergency operations and surgeries.

The creation of artificial blood was based on the property of haemoglobin to act as a substitute for blood without blood typing. Since the blood sugars, as the name itself depicts, are present on the surface of red blood cells and not on haemoglobin molecule, it could be used as a blood substitute in any patient. Moreover, the haemoglobin could be purified and then sterilized to store it for long periods, ranging around one year. Although, it was later found that the naturally occurring haemoglobin couldn't itself act as the sole substitute for blood and it was required to make some modifications within the molecule so that it would act as a perfect blood substitute. In the year of 1937, scientists demonstrated that haemoglobin when used as a blood substitute proves toxic to kidneys, though it accomplishes it task of oxygen delivery to the cells. Structurally, haemoglobin is a tetramer molecule which dissociates into dimers when it is present in blood. The formation of dimers could be harmful as in the kidneys where these dimers gets filtered, toxic accumulations may result.

To resolve these problems, two main approaches were taken into consideration. In the first approach, the aim was to create a haemoglobin molecule that would be entirely stable in the blood. In order to achieve this, haemoglobin was first purified and then cross-linked to connect lysine amino acids using simple chemical agents like glutaraldehyde. Out of the experimentation, two desired forms were obtained viz. polyhemoglobin, that contained numerous hemoglobin molecules linked into a larger complex, and cross-linked tetrameric hemoglobin, that contained specific crosslinks formed somewhere between subunits within the tetramer.

In a more advanced approach, knowledge of recombinant DNA biotechnology was applied. In this second approach, a modified form of haemoglobin was created that carried two hemoglobin subunits that were fused into one chain. The recombinant form of haemoglobin thus obtained formed a stable complex that had the similar tetramer nature as of the naturally occurring haemoglobin molecule. Though it differed in the terms of having two of the subunits covalently linked together.

In both the approaches, the product was large enough to prevent its filtering by the kidneys. Moreover, they seemed have retained its oxygen-delivering capabilities as possessed by the naturally occuring haemoglobin molecule.

Another approach is also there which consists of creation of a non-immunogenic red blood cell by encapsulation of haemoglobin inside some artificial containers, for instance, liposomes. A researcher, Thomas M. S. Chang has taken forward steps in this particular field of interest and has taken his work beyond natural materials. In his studies, he has tried to use biodegradable polymers for creation of haemoglobin nanocapsules. Several polymers, for example, polylactide and polyglycolactide are degraded into water molecule and carbon dioxide molecules when they enter human body that makes them a safe vehicle for encapsulation. Naturally, they are found to be more porous in nature than the lipids and are also depited as the stronger ones. Due to these properties, there is a requirement of less membrane material resulting into elevation in the hemoglobin content of the material with liposomes. Antioxidant enzymes, for example, superoxide dismutase, catalase, and metHb reductase may be selected and considered as a refinement for the process and to be included into the components that the capsule contains. Thus, the development in bionanotechnology sectors have opened new doors for better and novel therapeutic strategies. The creation of artificial blood forms has raised hopes for newer and better alternatives in the healthcare and medicine sector for saving millions of life through safe and healthy blood transfusions.

About Author / Additional Info:
A Budding biotechnologist + writer from India.. Visit http://in.linkedin.com/pub/shivani-sharma/4b/91b/384 or refer cv.napping@gmail.com for more details.
Researcher ID- J-4200-2012

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2760



Additional Articles:

•   R&D: The Poignant Loneliness--Brief Case Studies of 8 New Listed Drugs

•   CHRONIC KIDNEY DISEASE - The Endpoint of Major System Failures

•   The Use of Plants to Make Vaccines: Part-3

•   Theories of Sex predominance | Women and Men Differences




Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us