Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Difference Between Scanning Tunneling and Atomic Force Microscopes

BY: Muniba Safdar | Category: Biotech-Research | Submitted: 2010-10-24 05:11:48
       No Photo
Article Summary: "Information about Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) ;their advantages & disadvantages, resolution, composition and applications..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) or scanning force microscopy (SFM) are inventions of Scanning Probe microscopy a technique that forms images of surfaces using a physical probe that scans the specimen. An image of the surface is obtained by mechanically moving the probe in a raster scan of the specimen, line by line, and recording the probe-surface interaction as a function of position. STM is a powerful instrument that is used for imaging surfaces at the atomic level while AFM is one of the primary tools for imaging, measuring, and manipulating matter at the Nano-scale.

INVENTED:
Scanning Tunneling Microscopy (STM) was invented in 1981 and was developed by Gerd Binnig and Heinrich Rohrer.
Atomic Force Microscopy (AFM) was invented in 1985 and was also developed by Gerd Binnig and Heinrich Rohrer.

IMAGE:
STM gives two-dimensional image of the atoms.
AFM gives three-dimensional surface profile of the Nano-objects.

RESOLUTION:
STM gives better resolution than AFM because of the exponential dependence of the tunneling current on distance.
The force-distance dependence in AFM is much more complex when characteristics such as tip shape and contact force are considered.

CONSISTED OF:
STM uses a sharpened conducting tip.
AFM uses a conductive AFM cantilever (typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers) with a sharp tip (probe) at its end that is used to scan the specimen surface.

DEPENDED ON:
STM relies on electrical current between the tip and the surface.
AFM relies on movement due to the electromagnetic forces between atoms.

TUNNELING CURRENT:
STM record the tunneling current.
AFM does not record the tunneling current but the small force between the tip and the surface.

TIP USED:
STM uses a sharpened conducting tip (metallic tip).
AFM uses a conductive AFM cantilever.

INTERACTION:
In case of STM Interaction between probe and material surface is monitored is tunneling current.
While in AFM Interaction between probe and material surface is monitored is van der Waals force.

PHYSICAL CONTACT:
In STM Tip and substrate are in very close proximity but not actually in physical contact.
While in AFM Tip and substrate are actually in physical contact.

ATTACHMENT OF TIP:
Tip is not attached to a tiny leaf spring in case of Scanning tunneling microscopy.
In Atomic force microscope Tip is attached to a tiny leaf spring, the cantilever, which has a low spring constant. Bending of this cantilever is detected, often with the use of a laser beam, which is reflected from the cantilever.

MOUNTED ON:
Tip mounts on the scanner when we have scanning tunneling microscope.
Sample mounts on the scanner when we have atomic force microscope.

TIP SPACE:
STM's Tip is kept at a short distance from the surface.
While AFM's Tip is not kept at a short distance from the surface but it gently touches the surface.

VISUALIZATION:
STM can visualize and even manipulate atoms.
AFM can easily image non-conducting objects i.e., DNA and proteins etc.

USED FOR:
STM is a powerful instrument that is used for imaging surfaces at the atomic level. STM is being used for the conductance of single molecule.
The AFM is one of the primary tools for imaging, measuring, and manipulating matter at the Nano-scale.

ADVANTAGES & DISADVANTAGES:
• In STM the two parameters are integrally linked for voltage calculation.

• AFM offers the advantage that the writing voltage and tip-to-substrate spacing can be controlled independently.

• AFM gives three-dimensional image while STM only gives two-dimensional image. This is the advantage of AFM over STM.

• Resolution of STM is higher than AFM. STM gives true atomic resolution.

• An AFM cannot scan images as fast as a STM, requiring several minutes for a typical scan, while a STM is capable of scanning at near real-time, although at relatively low quality.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (2 comments so far)

Comment By Comment
Amandeep Kaur Sandhu
2012-04-29 00:06:44 285
helpfull article to distinguish STM & AFM
Muniba Safdar - Author
2012-07-03 12:29:19 312
Thanks alot for your appreciation

Leave a Comment   |   Article Views: 18030



Additional Articles:

•   Automation in Plant Tissue Culture

•   Steps in Microarray Data Analysis - Part I

•   Genetic and Genomics Resources in Finger Millet

•   Environmental Pollution - List of Most Common Pollutants




Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us