Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Genomic Innovation in Crop Improvement

BY: Lalbahadur Singh | Category: Biotech-Research | Submitted: 2017-03-16 10:22:26
       Author Photo
Article Summary: "Crop production needs to increase to secure future food supplies, while reducing its impact on ecosystems. Detailed characterization of plant genomes and genetic diversity is crucial for meeting these challenges. Advances in genome sequencing and assembly are being used to access the large and complex genomes of crops and their .."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Genomic Innovation in Crop Improvement
Author: Lalbahadur Singh, Nimmy M. S

Plant genomics has a central role in the improvement of crops, including discovery of genetic variation that underlies enhancing performance and increasing the efficiency of plant breeding. Both approaches are important for breeding new varieties and the need to identify new sources of genetic variation. These genomic data are enabling key steps in crop improvement, such as trait identification and alteration, the breeding process and performance optimization, which can now be considered as DNA sequence analysis problems.

Crop plant genomes
The extraordinary diversity of plant species is reflected in their genomes, which vary greatly in size and complexity (Bennett et al., 2011). Dramatic increases in genome size, notably in the grasses, are driven by bursts of DNA-repeat expansion that tend to preserve an underlying conserved order and composition of genes (Bennetzen et al., 2005). DNA repeats have an important role in generating phenotypic diversity and plants have evolved epigenetic mechanisms to limit the parasitic expansion of such repeats (Lisch et al., 2012: Kim et al., 2014). The other dominant feature of plant genome evolution is whole-genome duplication, which is pervasive in most plant lineages (Jiao et al., 2012). Whole-genome duplication can lead to aneuploidy, asymmetric genome evolution (Woodhouse et al., 2010), the rapid loss of genes, exchange between chromosomes and new gene functions, and is therefore an important driver of genetic and phenotypic diversity and adaptation. The large genome sizes, long tracts of related repeat sequences and the closely related homeologous genes in the large gene families of polyploid crops have presented considerable challenges for sequencing technologies. Assembling accurate and representative genomes and assessing the full range of available genetic variation are therefore central aims for crop plant genomics.

DNA sequencing and assembly technologies
A variety of sequencing methods are now available for different applications in crop improvement (green pyramid). The number of genomes that can be sequenced cost-effectively varies according to the method applied (left in figure 1). Long-read technologies from PacBio, alone or coupled with Illumina assemblies, can be used to provide accurate long-range assemblies for a smaller number of genomes. These are used to define comprehensively the range and types of variation that are found in the genomes of a species (the pan-genome). Linked reads, coupled to Illumina sequencing, may provide more cost-effective capacity for sequencing on the order of thousands of genomes, which is useful, for example, for the identification of structural variation. Skim sequencing consists of low-coverage (for example, 5-10x) Illumina reads and presents a cost-effective way of identifying genetic variation and haplotypes in populations. Exome sequencing captures gene-coding regions, and genotyping by sequencing typically involves the sequencing of about 100-150 bases from a randomly located restriction-enzyme cleavage site in the genome.

Figure 1: Optimal sequencing systems for crop applications (Source: Bevan et al, 2017)

Erosion of genetic diversity in cultivated crops and its re-incorporation through genomic
Genetic diversity (coloured circles figure 2a) in populations of wild precursors of crops has been eroded by domestication, in which a limited range of diversity is present in landraces that were initially selected and adopted for cultivation. Subsequent breeding has drawn on a limited range of the variation present in landraces to produce the elite cultivars that are used in modern agriculture. The identification of genes for crop improvement can use mutagenesis to introduce changes into the DNA of crops. Mutants with desired characteristics can be identified by screening for desired properties, known as phenotypes. In practice, this method is time-consuming and imprecise unless a specific phenotype can be measured in large populations. Mutant lines with desired phenotypes are pooled and sequenced. Genomics can accelerate the process of identifying mutants by sequencing populations of mutant crops (or a range of wild relatives). Sequencing can be targeted to all genes, or specific families of genes, using sequence capture methods. RNA can also be sequenced to identify changes in gene expression that are caused by mutagenesis. Sequences of mutant lines are then compared to identify genes that are consistently mutated in the lines that exhibit the desired phenotype (figure 2b). Genomics can also be used to access genetic variation in populations of crop wild relatives. A population can be sequenced using a variety of approaches (described in Figure 1). At the same time, the population is screened for a range of phenotypes of interest. Patterns of sequence variation, or haplotypes, can be associated with phenotypes to identify sequence variation that may cause the phenotype (figure 2c).

Figure 2: Exploiting genomics to recapture genetic diversity (Source: Bevan et al, 2017)

Concluding remark

Progress in genomics technologies is now enabling the rapid and cost-effective sequencing and assembly of the largest and most complex plant genomes. Researchers can now access and characterize a vast reservoir of natural genetic variation from wild or undomesticated relatives of crops. The application of improved short-read sequencing and genome assembly will continue to provide the most cost-effective solutions for the accurate de novo assembly of larger plant genomes and accessing genetic diversity. However, it is clear that sequencing technologies that involve longer reads, including single-molecule, real-time sequencing, and linked-read sequencing on long molecules will have a major impact by improving sequence assembly and perhaps even by supplanting the short-read sequencing of crop genomes if increases in accuracy and cost-effectiveness can be maintained.


1. Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou J., Krasileva K., Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543, doi:10.1038/nature22011.

2. Bennett, M. D., Leitch, I. J. (2011). Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot., 107, 467-590.

3. Bennetzen, J. L., Ma, J., Devos, K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Ann. Bot., 95, 127-132.

4. Lisch, D. (2012). How important are transposons for plant evolution? Nature Rev. Genet., 14, 49-61,

5. Kim, M. Y., Zilberman, D. (2014). DNA methylation as a system of plant genomic immunity. Trends Plant Sci., 19, 320-326.

6. Jiao, Y. et al. (2012). Ancestral polyploidy in seed plants and angiosperms. Nature, 473, 97-100.

7. Woodhouse, M. R. et al. (2010). Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol., 8, e1000409.

About Author / Additional Info:
1, Right now I am pursuing Ph.D. in biotechnology from Indian agricultural research institute (IARI), new delhi. Currently I am working in the area of miRNAs in pulse crop.

2, Scientist, NRCPB, IARI, new delhi

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 79

Additional Articles:

•   Rabies: A Neurotropic Disease

•   Yeast Artifical Chromosomes (YACs) and their Applications

•   Extraction Techniques for Herbal Drugs - Part 1

•   Next Generation Sequencing (NGS): The Next Step in Personalized Medicine

Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us