Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Strategy to Produce Marker-free Transgenic Plants

BY: Lalbahadur Singh | Category: Biotech-Research | Submitted: 2017-02-21 06:06:59
       Author Photo
Article Summary: "Selectable marker genes (SMGs) have been extraordinarily useful in enabling plant transformation because of the low efficiency of transgene integration. However, there are perceived risks in wide-scale deployment of SMG-transgenic plants, and therefore research has recently been performed to develop marker-free systems..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Strategy to produce marker-free transgenic plants
Author: Lalbahadur Singh


To produce transgenic plants, selection systems are used that lead to the selective growth of transformed cells. Genes encoding for resistance to specific antibiotics or herbicides have been found to be effective for selection and provide a means for rapidly identifying transformed cells, tissues, and regenerated shoots. Antibiotics and herbicides kill cells by a variety of mechanisms and resistance genes have been widely used in transgenic plant production.

However, because SMGs are integrated into the plant genome, there are concerns about widespread occurrence of transgenes in novel ecosystems ( e.g., antibiotic resistance in crops and their agro ecosystems). Horizontal gene transfer from plants to environmental or medically related bacteria, or from plant products consumed as food to intestinal microorganisms or human cells, are generally considered to be not likely, but the inherent risks have not been totally addressed, and therefore there remain both regulatory and public concerns in many places in the world. So therefore, Following are some of the strategy/ method for generation of marker free transgenic plants are;

Co-transformation

Co-transformation is a method for production of marker free transformants based on Agrobacterium- or biolistics mediated transformation in which a SMG and gene of interest are on separate constructs. Three approaches are used for co-transformation: introduction of two T-DNAs, in separate Agrobacterium strains or biolistics introduction of two plasmids in the same tissue; (ii) introduction of two T-DNAs carried by different replicons within the same Agrobacterium strain; and (iii) introduction of two T-DNAs located on the same replicon within an Agrobacterium. In all of these variants, SMGs can subsequently be removed from the plant genome during segregation and recombination that occurs during sexual reproduction by selecting on the transgene of interest and not the SMG in progeny.

Using plant DNA (P-DNA)

Recent studies have shown that plants have T-DNA border-like sequences in rice and Arabidopsis and these might be used in transformation. Because this so called plant DNA (P-DNA) lacks any open reading frames and contains a high A/T content, it is likely the footprint of ancient Agrobacterium-mediated natural transformation events via horizontal gene transfer. It has been demonstrated that plant-derived P-DNA fragments can be used to replace the universally employed Agrobacterium T-DNA for transformation. In addition, co transformation of the inserted desired transgene into P-DNA and SMG-containing T-DNA is capable of producing marker-free and backbone-free transgenic plants.

Negative selection

This strategy is based on the incorporation of a negative selection step. The use of a negative SMG next to a positive SMG in the same construct is a powerful method to create marker gene-free transgenic plants. In this method, transformed offspring are selected for the absence of negative SMG under the selection pressure of a negative marker gene and the presence of the desired transgene. This negative selection method allows researchers to decrease their search for selectable marker-free transgenic plants without having to resort to copious molecular analyses, i.e., thousands of PCR analysis.

Site-specific recombination-mediated marker deletion

Recombination is a universal phenomenon that can occur at any place between two homologous DNA molecules. There are three well-described site-specific recombination systems that might be useful for the production of marker-free transgenic plants: Cre/loxP system from bacteriophage P1, where the Cre enzyme recognizes its specific target sites, FLP/ FRT recombination system from Saccharomyces cerevisiae, where the FLP recombinase acts on the FRT sites and R/RS recombination system from Zygosaccharomyces rouxii, where R and RS are the recombinase and recombination site, respectively.

In these systems, elimination of SMG would require recombinase expression in transgenic plants. Alternatively, a transgenic plant of interest can be crossed with a plant that expresses a recombinase gene. After segregation, marker-free transgenic progeny plants can be identified.

Transposon-based marker elimination

Use of transposable elements for marker gene removal involves several steps: (i) insertion of the marker gene onto a transposon, a segment of DNA that hops around in the plant’s genome; (ii) co-transformation with gene of interest; and (iii) segregation of the marker gene.

Intrachromosomal recombination system

As above, recombination sites are engineered into the plant, but no recombinase is expressed. The attachment site from phage origin is denoted POP’ (P for phage) or attP, and the attachment site from bacterial origin is denoted BOB’ (B for bacteria) or attB. Intrachromosomal recombination in plants is obtained by insertion of SMG between two direct repeats of attP that

facilitates spontaneous excision. Base composition of the attP site sequence is A + T rich, which is conjectured to play a recombination-stimulating role.

Removal of chloroplast marker genes

Mitochondria and chloroplasts have independent genomes in plants that have been the target (especially chloroplasts) of genetic transformation. Chloroplast transformation vectors are designed with homologous flanking sequences on either side of the transgene. In addition, chloroplast engineering overcomes the challenges of gene silencing, position effects, and multi-step engineering of multiple genes, which are current limitations of nuclear transformation. Homologous recombination (the use of identical sequences for example in promoters and terminators between genes) and site-specific recombination (for example Cre/lox recombination- based systems) or transient expression of recombinase are all potentially suitable for producing marker- free engineered chloroplast of plants.

Use of markers not based on antibiotic or herbicide resistance

Recently, an Escherichia coli-derived phosphomannose isomerase (PMI) was used to convert mannose-6-phosphate to fructose-6-phosphate for positive selectable marker in plant transformation. Only transformed cells are capable of utilizing mannose as a carbon source. Another marker, xylose isomerase (xylA) gene of Streptomyces rubiginosus can be used as the selectable marker and xylose as the selective agent. The enzyme from S. rubiginosus catalyses the isomerization of D-xylose to D-xylulose. The non-transformed plant cells cannot utilize the D-xylose as a sole carbon source, but xylA transformed cells with are capable of growing on xylose.

References

1. Darbani, B., Eimanifar, A., Stewart, C. N., Jr. Camargo, W. N. (2007). Methods to produce marker-free transgenic plants. Biotechnol. J., 2, 83-90.

About Author / Additional Info:
Ph.D. scholar, biotechnology, Indian agricultural research institute (IARI), new delhi. Currently I am working in the area of miRNAs in pulse crop.

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 201



Additional Articles:

•   Genome-Wide Association Study: SNPs to Disease Associations

•   Cisgenics Plants are as safer as Traditional and Breeded plants

•   Carotenoids- Introduction, Origin and Properties

•   Why and How of Normalization in Microarray Data Analysis




Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us