Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Trichuris Muris Infection - Immune Response and Lifecycle

BY: Preethi Venkateswaran | Category: Biotech-Research | Submitted: 2011-04-13 20:04:03
       No Photo
Article Summary: "Gastrointestinal helminth infections are widespread across the globe and throughout the animal kingdom where they are responsible for the loss of productivity in cattle and other livestock. They cause infections in humans too which has a considerable impact as they infect over 1 billion people worldwide..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Gastrointestinal helminth infections are widespread across the globe and throughout the animal kingdom where they are responsible for the loss of productivity in cattle and other livestock. They cause infections in humans too which has a considerable impact as they infect over 1 billion people worldwide. In humans there is considerable morbidity and infection is associated predominantly with four species of helminths (Ascaris lumbricoides, Acylostoma duodenale, Nector americanus and Trichuris trichiura.) Infection of humans with these parasites has considerable impact on human health with estimates of 39 million disability adjusted life years (DALYs). Current treatment largely depends on chemotherapy with anthelmintics. This is only partially effective, however, as over time parasite resistance has increased tremendously. Understanding the immune system of the host against the parasite is a better way to take control of the situation. By doing so, there can be ways to eradicate the parasite and further provide protection. Animal models have contributed considerably to this understanding.

Animal Models

Trichuris trichiura, the human whipworm infects approx over 1000 million people across the world. The mouse whipworm, Trichuris muris proves to be a useful model of study in order to understand the human whipworm as it has an immunological cross reactivity with T. trichiura. The mouse provides an easily maintained host which can be kept in controlled clean conditions and hence appropriate for study. Current research focuses on T. muris infections and the inbred strains of mice.

Trichuris Muris Life cycle

T. muris infection follows a faecal-oral route where the parasite is transmitted by ingestion of infective eggs released in faeces by the host. These eggs pass through the digestive tract and accumulate in caecum; this process stimulates hatching. The first larval stage (L1) hatched from eggs are detected in caecum as early as 90mins post infection (p.i). The larvae, then penetrates the mucosal tissues and epithelia. Larvae reside in the caecum, anchored into the epithelial layer and no penetration of basement membrane has been detected in infection. The crypt larvae grow and undergo moults at day 9, 17 and 22 p.i before reaching maturity at day 32 p.i. During this time, the larvae extend up the crypt axis and the anterior of the worm forms tunnels composed of enterocytes cells. By adulthood worms protrude into the lumen which is needed for mating and subsequent egg release into the faeces.

Immune response to Trichuris Muris

Many studies have been carried out in order to study the infections of T. muris in lab mice. I would move these references. The infection varied according to the strain of mice used. The first experiments were carried out which exhibited over 70% of the worm elimination was in Schofield mice. The 30% mice who did not expel worms were still susceptible to challenge. As the majority of the mice expelled their parasites before the worms reached maturity it was thought that immunity may be stimulated by larval stages. In order to test this, Wakelin prematurely ended infection with antihelmintic treatment at different stages of larval development. It was observed that infections abbreviated after 14 days stimulated immunity, but it was enhanced further if infection was allowed to continue until 18 days p.i. Hence it was seen that antigen was not secreted at specific larval stages and immunity increased by a longer exposure to parasite antigens.

A comparative study was done in five outbred and one inbred strain of mouse. It was seen that only the inbred strain exhibited a uniform response and suggested variation to resistance is a host genetic component. Cortisone treatment induced worm survival and this suggested a time point which is an important period for worm survival/expulsion.

Another study to understand the acquired immunity was undertaken by. The cells/serum from infected animal was passively transferred and protection in inbred NIH mouse strain was provided as they expelled their worms quickly. MLN cells (Mesenteric lymph node) conferred effective protection to infection and serum transfer was successful to a lesser extent. The thymus was also important for resistance to the parasite proving that MLN cells taken from donors at day 21 post infection were very efficient in stimulating resistance in the receipient but not if the mouse had been sub-lethally irradiated prior to transfer. Hence, it was suggested that even if the lymphoid donor cells could transfer resistance, an endogenous host was essential. Other cell populations also played an important role in T. muris infections apart from MLN.

About Author / Additional Info:
A scientific writer

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 5627

Additional Articles:

•   The Therapeutics of Biopharmaceutical Substances

•   Celiac Disease: New Advancements in Detection and Therapy

•   Production of Protein Rich Feed For Ruminants

•   Clean Rooms Nomenclature - Class 100, Class 1000 Areas.

Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us