Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Understanding Genetic Disorders in Human Genetics

BY: Gayathri Raghavan | Category: Biotech-Research | Submitted: 2013-02-25 13:55:22
       No Photo
Article Summary: "The concept of genetic disorder was relatively unknown before the 1900s. But, after William Bateson suggested the term 'genetics' in 1906, scientists began learning and understanding more about genetics and heredity. Any abnormality in the DNA of an individual's gene is called genetic disorder..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Abnormalities range from single-gene disorders to chromosomal disorders. According to studies conducted in Newcastle, Baltimore, and Montreal, six to eight percent of genetic diseases among children were attributed to single-gene defects while .2 to .4 percent was attributed to chromosomal disorders. Some genetic disorders are common and harmless while some disorders are serious.

Genetic disorders are classified into three different categories: chromosomal disorders, Mendelian or monogenic disorders, and complex diseases traits.

Chromosomal Disorder
The abnormal arrangement or lack or excess of one or more chromosomes is called chromosomal disorder. In this disorder, the DNA undergoes largest changes and also includes an entire extra genome copy, an extra chromosome, duplications, or deletions of chromosomal portions, and other defects. A chromosomal abnormality causes mental retardation, behavioral disorders, growth disturbances, tumors, malformations, anatomic development, and spontaneous abortions.

Mendelian or Monogenic Disorders
Mendelian and monogenic disorders are primarily determined by a single mutant gene. These disorders exhibit the inheritance pattern and are further classified into autosomal dominant, autosomal recessive, or X-linked. Monogenic disorders occur in about 10 per 1000 live births with 7 in 1000 dominant, 2.5 in 1000 recessive, and 0.4 in 1000 X-linked.

Some of the common autosomal dominant disorders include: familial hypercholesterolemia, Marfan's syndrome, myotonic dystrophy, and tuberous sclerosis to name a few. Some of the autosomal recessive disorders include: deafness, sickle cell anemia, albinism, cystic fibrosis, and phenylketonuria. X-linked disorders include: hemophilia A, ocular albinism, Fabry's disease, color blindness, and testicular feminization.

Complex Disease Traits
Multiple gene interaction with multiple environments or exogenous factors causes complex disease traits or multifactorial genetic diseases. Although, these complex traits, such as gout, diabetes mellitus, and inheritance pattern are complex, the risk of comparatively less than in monogenic disorders. Common chronic diseases in adults such as peptic ulcer, hypertension, schizophrenia, and coronary heart disease and birth defects such as congenital heart disease and spina bifida fall under complex disorder traits.

Drugs, Environment, and Family Factors
Genetic disorders caused due to abnormal response to drugs such as malignant hyperthermia has affected 50 percent of the U.S. population. Addition to drugs, various environmental factors can further aggravate certain genetic disorders. Example, ultraviolet ray exposure affects patients with xeroderma pigmentosum while aspartame utilization causes special risks in persons with phenylketonuria.
Many diseases are known to run in the family where even if one parent suffers from a dominant gene disorder, then it is highly possible that it will pass on to the child. If both parents carry recessive genes, then the child may or may not be affected or may act as a carrier. When a mother carries X-linked genes, then very likely her son may get affected and when the father carries an X-linked gene, all daughters will acts as carriers. The common disorders include diabetes, heart diseases, extra finger or toes, and shorter arms and legs.

Genetic Disorders among Ethnic Groups
Monogenic and complex diseases traits depend on various factors such as family history, and ethnic and geographic origin of a family. Some examples of genetic disorders that occur in high-frequency in specific ethnic groups include: diabetes mellitus among native North American populations, congenital neprhosis among Finns, familial Mediterranean fever among Armenians, adult lactose deficiency among the Chinese, cystic fibrosis among Europeans, and familial hypercholesterolemia among South African whites and French Canadians.

Diagnosis and Prevention
Most monogenic disorders often go undiagnosed contributing to the high occurrences of genetic disorders. With the appropriate information on the disorder given, the physician establishes correct diagnosis using biochemical or molecular testing. Issues such as new mutation, expression variation, phenotype/genotype correlations, and lack of penetration are given more importance. Family members should be counseled on prenatal diagnosis, carrier testing, and reproductive counseling thereby to understand and prevent common genetic disorders.

The last decade has seen various advancements in human genetics. Still, the roles of genes are complex and central in terms health and disease. Treating a genetic disorder is both difficult and most often not completely effective. Though exciting breakthroughs have been achieved, the issue of genetic disorders continues to pose a serious challenge to the scientific community.

About Author / Additional Info:

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2841

Additional Articles:

•   Are You at Risk For Diabetes?.

•   Genetic Use Restriction Technology (GURT) in Crop Plants.

•   Medicinal Uses of Cassia Auriculata

•   Molecular Markers: A Tool for Improvement in Crops

Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us