Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Monoclonal Antibodies - Mechanism, Applications and Challenges

BY: Pournami Gouthaman | Category: Biotechnology-products | Submitted: 2011-04-10 09:35:25
       No Photo
Article Summary: "The production of monoclonal antibodies was indeed a breakthrough in the world of biotechnology and medical science. The applications and uses of monoclonal antibodies spread through a wide range and in spite of the obstacles and challenges faced, researches and detailed studies are being carried out to solve these and transform.."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Monoclonal antibodies are specific antibodies produced by the clones derived from a single parent cell, by fusing the antibody-producing cell (B cell) with a laboratory cultured myeloma cell through the process of somatic cell hybridization. The result is a hybridoma which has the capability to produce mono-specific antibody that can help in the recognition or purification of a target cell. Due to its characteristic of increased specificity, these were believed to transform into a powerful tool in molecular biology, biochemistry and medicine. This dream was successfully realized when immunotherapy became a popular tool for various medical applications, especially in cancer treatment. But along with its wide spectrum of uses in targeted therapy, there were certain hurdles too, which should be overcome.

Antibodies are used for diagnostic purposes. If monoclonal antibodies against a particular substance (antigen) are produced, this can be used to detect the same. A typical example is the ELISA test for diagnosis of AIDS. Antibodies that target human chorionic gonadotropin (HCG) are used in pregnancy test kits worldwide. The presence of a particular protein on a membrane is detected by tests such as Western blot and immune dot blot. Monoclonal antibodies are also excellent candidates for immunohistochemistry and immunofluorescence test which detects antigens in fixed tissue sections, frozen tissue sections or live cells.

Monoclonal antibody therapy was a major breakthrough in medical science. Antibodies that specifically bind to target cells are used to stimulate the patient's natural immune system to fight against these cells. Various research activities are being carried out in this field because production of a monoclonal antibody which is specific to any extracellular substance is possible and this opens numerous possibilities for treatment against serious diseases like multiple sclerosis, rheumatoid arthritis and even cancer. The mechanism by which monoclonal antibodies work can be either direct or indirect. The direct therapeutic effect is carried out by producing programmed cell death or apoptosis. They have the ability to stop the proliferation of tumor cells by blocking the growth factor receptors. Effects of antibody therapy are attained indirectly either by direct cell toxicity, binding complement, or by using macrophages and monocytes to destroy the target cell. This is also called antibody-mediated cell toxicity. The monoclonal antibody can also be conjugated to radioisotope, toxin or cytotoxic agent, which then binds to the antigen and causes cell death.

Another important application of monoclonal antibody is in the treatment of viral diseases, which are usually considered as untreatable. It can be used to classify a single strain of pathogen and developmental biologists use these to target specific molecules in an organism. For example, proteins responsible for cell differentiation in respiratory system can be found out using monoclonal antibodies. Unequivocal classification of blood groups is another application of monoclonal antibodies. Immunological assays using monoclonal antibodies against the marker antigen of tumor allows accurate detection of tumor cell type, nature of tumors and early cases of metastasis. Monoclonal antibodies can also be used for accurate detection of specific chromosomes of a given species.

Even though the uses and applications of monoclonal antibodies drive a positive impression on it, there are certain limitations for the successful utilization of the above mentioned therapies. The highly heterogeneous distribution of malignant cells opens a possibility that only some of the cells express tumor antigens. Also, the density of antigens can vary, making certain cases where too low concentration of expressed antigen makes the action of monoclonal antibody less effective. In addition to that, if the delivery of monoclonal antibody is to be done via the blood, the non-optimal tumor blood flow makes it difficult for the therapy to reach the target site. The binding of passive monoclonal antibodies can be prevented due to high interstitial pressure within the tumor cells and sometimes the therapeutic antibody binds to the freely floating antigen which is released from the malignant cell, which makes the therapy ineffective. An immune response to mouse cell line derived antibody is another challenge faced during clinical applications because this not only decreases the effect, but also wipes out the chances of a re-treatment.

In spite of these obstacles, research activities and detailed studies are progressing to overcome the same and it is certain that monoclonal antibodies provide a convincing solution to many unanswered problems faced by medical science.

About Author / Additional Info:

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 9327

Additional Articles:

•   Selfing and Crossing Techniques in Plants

•   Genetics of Addiction

•   Role of Lactation Pathway in Decreasing Breast Cancer Risk

•   Grafting in Sohiong for Plant Multiplication

Latest Articles in "Biotechnology-products" category:
•   How Biotechnology Helps Create Biofuels

•   Enzyme Linked Immunosorbent Assay (ELISA): Procedure, Applications, Types

•   Biotechnology in the Manufacturing of Detergents

•   Marine Biotechnology and its Applications in Making Drugs

•   Agarose Gel DNA Electrophoresis - Applications, Advantages and Disadvantages

•   Biochemistry Analyzers: Uses and Types

•   Biomarkers and Diagnosis of Diseases

•   Trends in Biotech Engineered Vaccines

•   Biotechnology and Cosmetics

•   Technique of Gene Gun

•   Biotechnology in the Manufacture of Paper

•   Importance of Biofuels or Biodiesels and How they are produced.

•   Mussel Biopolymers: A Cloning Approach

•   Anthrax Detection Device and Toxic Mold Detection Device

•   Recombinant DNA Technology and the Pharmaceutical Industry

•   Process of Electroporation: Definition and Applications

•   Production of Recombinant Human Growth Hormone Somatotropin

•   Somatic Cell Fusion- A Biotechnology Technique

•   Recombinant Protein Expression System

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us