Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Technologies Involved in Drug Development

BY: Gayathri Raghavan | Category: Biotechnology-products | Submitted: 2013-03-08 07:24:23
       No Photo
Article Summary: "Herbal medicines have played a major role in drug development, disease prevention and cure. The World Health Organization (WHO) reported that nearly 80 percent of the world population, predominantly from the developing nations, consumes herbal medicines to meet their primary healthcare requirements..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Introduction

Herbal medicines have played a major role in disease prevention and cure. The World Health Organization (WHO) reported that nearly 80 percent of the world population, predominantly from the developing nations, consumes herbal medicines to meet their primary healthcare requirements. Medicinal plant cultivation through systemic methods were opted by scientists in order to yield medicinal plants of high quality. Medicinal and aromatic plants (MAPs) through biotechnological interventions have significantly improved the future of herbal medicines. Medicinal plants have yielded a plethora of drugs including: morphine, a narcotic from Papaver somniferum; reserpine, an antihypertensive drug from Rauvolfia serpentina; cocaine, an anesthetic and CNS stimulant from Erythroxylon coca to name a few.

Medicinal and Aromatic Plant Drugs

The MAPs undergo genetic transformation to yield hairy roots. These hairy roots are grown in bioreactors for the synthesis of secondary metabolites and for improved productivity. Other key applications of transformed root cultures include whole plant regeneration; biotransformation; artificial seeds production; high-quality metabolite production; and phytoremediation. Hairy root cultures have a plethora of advantages when compared to cell cultures. Hairy roots have played major roles in molecular farming, antibodies and fusion proteins production. The antimalarial drug Artemisnin and the anticholinergic drug Atropine are produced from hairy root cultures of Artemisia annua and Atropa belladonna respectively.

Bioinformatics in Drug Development

Biotechnology gave rise to new discipline called bioinformatics. Bioinformatics has had a huge impact on drug development. Bioinformatics approaches have paced up the process of drug discovery and have changed the way the drugs are designed. The rapid growth of bioinformatics has potentially improved allied technologies and automated DNA sequencers thereby improving gene sequences, gene expression, proteins, and protein expression. In the field of drug discovery, bioinformatics aims to:
(1) develop new models of proteins;
(2) develop various approaches to identify the function or structure of new proteins;
(3) examine protein relationship; and
(4) identify specific genes in stored DNA sequences.

Nanotechnology in Drug Development

The participation of nanotechnology in the production medicinal drugs has gained a reputation in recent times. Scientists have anticipated that nano and micro reactors will have a huge role to play in the discovery of medical drugs. These reactors are expected to produce high-quality and low- volume compounds such as nutritional compounds, fragrances, pharmaceuticals, dyes, and flavors to name a few. Pharmaceuticals that are produced by recombinant DNA technology (rDNA) and nanotechnology combined are likely to yield advanced medicinal compounds that aid in accurate disease diagnosis, nanobiosensors for culture conditions manipulation, and bionanostructures for functional molecule insertion.

The Advantages of the Four Host Types

Biochemical drugs are produced by four hosts namely: plant cell cultures; bacterial cells; mammalian cells; and yeast cells. Biochemical drugs produced from plant cell cultures are:

(1) secondary metabolites with the correct stereochemistry;
(2) multimeric proteins;
(3) homogenous;
(4) not oncogenes and do not produce endotoxin; and
(5) cells are separated from the culture medium with ease.

The advantages of producing biochemical drugs by bacterial cells include:
(1) short development time;
(2) product is secreted in the culture medium; and
(3) physiological and genetic characterization are profound.

Biochemical drugs from mammalian cells offer the biggest advantage in terms producing dominant drug proteins. Yeast cells produce biochemical drugs that are inducible promoters and are well-established in the industrial infrastructure. Apart from offering individual advantages, the four host types offer certain common advantages including:

(1) general safety;
(2) high protein accuracy ;
(3) high protein yield;
(4) easy scale-up and propagation;
(5) low cultivation costs;
(6) desired glycosylation activity; and
(7) post-transnational modification ability.

Additionally, in 2004, the Bill and Melinda Gates Foundation has granted $ 42 million funds toward synthetic biology approaches, aiming to make available the semi-synthetic artemisinin drug to the developing nations in Asian and African continent. This initiative was to emphasize the importance of biochemical compounds development.

Example- Drug Types

Noscapine is an antimicrotubule drug, a combination of codeine and noscapine, was discovered by French pharmacist Pierre-Jean Robiquet in 1817. The drug is an active cough suppressant and has now been employed to treat cancer cells. Perennial herbaceous plants such as mayapple and meadow saffron are used in the production of potent drugs podophyllotoxin and colchicine respectively.

The paradigm shift from traditional drug production methods to biotechnological methods has greatly improved the production of high-value chemical compounds that subsequently have improved the quality of life and disease prevention.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2436



Additional Articles:

•   Synthetic Seed Production and Application

•   Financial and Marketing Aspects of Qnexa

•   Fate of a Drug After Administration

•   Plant Growth Promoting Substances




Latest Articles in "Biotechnology-products" category:
•   How Biotechnology Helps Create Biofuels

•   Enzyme Linked Immunosorbent Assay (ELISA): Procedure, Applications, Types

•   Biotechnology in the Manufacturing of Detergents

•   Marine Biotechnology and its Applications in Making Drugs

•   Agarose Gel DNA Electrophoresis - Applications, Advantages and Disadvantages

•   Biochemistry Analyzers: Uses and Types

•   Biomarkers and Diagnosis of Diseases

•   Trends in Biotech Engineered Vaccines

•   Biotechnology and Cosmetics

•   Technique of Gene Gun

•   Biotechnology in the Manufacture of Paper

•   Importance of Biofuels or Biodiesels and How they are produced.

•   Mussel Biopolymers: A Cloning Approach

•   Anthrax Detection Device and Toxic Mold Detection Device

•   Recombinant DNA Technology and the Pharmaceutical Industry

•   Process of Electroporation: Definition and Applications

•   Production of Recombinant Human Growth Hormone Somatotropin

•   Somatic Cell Fusion- A Biotechnology Technique

•   Recombinant Protein Expression System



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us