Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Usefulness of Bioemulsifiers and Biosurfactants For Environmental and Medical Applications

BY: Sonali Bhawsar | Category: Biotechnology-products | Submitted: 2011-03-16 07:22:34
       Author Photo
Article Summary: "Properties of bioemulsifiers (BE) and biosurfactants (BF) that makes them suitable for their environmental and medical applications have been discussed in the present article..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Usefulness of bioemulsifiers and biosurfactants for environmental and medical applications

Bioemulsifiers are amphipathic polymers while as biosurfactants are surface active chemicals produced by large number of bacteria, fungi and yeasts. They have multiple applications in medicine, industry, pharmacy, agriculture and environment. Their unique structures and physicochemical properties determine their applicability in various fields. There is large variability in their production, surface active properties, rheological properties and chemical composition. Depending upon their chemical nature, they have been classified as high molecular weight (BE) and low molecular weight (BS) compounds. Bioemulsifiers are composed of polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. Biosurfactants are generally glycolipids or lipopeptides in which rhamnolipids, trehalolipids and sophorolipid compounds predominate. Certain advantageous characteristics of both BE and BS makes them suitable for environmental applications, such as their biodegradability, compatibility to environment, very less or no toxicity to flora and fauna of different ecosystems. They are known to increase the bioavailability of carbon sources. They are applied in relatively low concentration and are functionally effective at extremes of pH and temperature or other extreme environmental conditions. They are found to be functionally substrate specific and generally do not imbalance the original form of ecosystem. Their commercial production is cost-effective in terms of substrate and production medium utilized or media components and substrates can be obtained from cheaper sources like agro-industrial wastes. It has also been possible to produce BS especially, at contaminated sites. For this, producing microbe can be isolated and exploited for exact application like microbes isolated from metal contaminated soils could be utilized for the remediation of that metal. Being amphipathic molecules, their hydrophilic and hydrophobic moieties tend to partition at interface between different fluid phases like water in oil or oil in water with different degrees of polarity. This criterion is the most important for environmental applications of these biomolecules. These advantages of bioemulsifiers and biosurfactants over their chemical counterparts make them promising for environmental applications. Some important applications are microbially enhanced oil recovery (MEOR), biodegradation, heavy metal recovery, rhizoremediation, phytoremediation and biological control. In addition to this, they contribute in ecologically important functions of microorganisms such as biofilm formation and establishment, chemotaxis and quorum sensing, pathogenesis related phenomena and help to establish the microbes in their microhabitat.

Use of BS as antimicrobial agents is well known. Biosurfactants produced by Bacillus are already in use as antibiotics for therapeutic purposes. Surfactin produced by Bacillus subtilis has been used for inhibition of fibrin clot formation, hemolysis and formation of ion channels in lipid membranes. It has shown antitumour activity against carcinoma cells, antiviral activity against human immunodeficiency virus (HIV-1) and antimycoplasma activity. Pumilacidin from Bacillus pumilus has antiviral activity against herpes simplex virus, Iturin from Bacillus subtilis was shown to possess antimicrobial activity and antifungal activity against profound mycosis. Lichenysin of Bacillus licheniformis has potent antibacterial activity and chelating properties. Surfactant of Lactobacillus is used as probiotic drugs for maintenance of healthy intestinal and urogenital tract. Rhamnolipid BS of Pseudomonas aeruginosa has antimicrobial activity against Mycobacterium tuberculosis. Viscosinamide from P.fluorescens have potent antimicrobial activity. In addition to this, surfactant and emulsifiers from Candida antartica, Torulopsis bombicola and Rhodococcus erythropolis have been utilized as important therapeutic agents. Biosurfactants have been found to inhibit the adhesion of pathogenic organisms to solid surfaces or to infection sites hence they are also used as antiadhesives in medical practice. Surfactin of Bacillus and surlactin of Lactobacillus have potential application as antiadhesives agents for the prevention of infection by streptococci and enteric bacteria respectively. Spiculisporic acid, sophorolipids and lipopeptide from Penicillium spiculisporum, Torulopsis bombicola and Bacillus sp. respectively have been used in cosmetic formulations and biosoap production. Bioemulsifiers also find tremendous applications in food industries. So what makes BS and BE so useful in medical field? First desired property is that some BS and BE have antibacterial, antifungal and antiviral activities which make them promising candidates for the treatment of diseases as therapeutic agents. They exhibit different chemical structures, such as glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids and neutral lipids which give advantage to modify them structurally and functionally for various physiological functions. It is possible to genetically manipulate or alter their structure to selectively enhance antimicrobial profile. They can be tailor-made to suit different applications by changing the growth substrate or growth conditions during their production. They are non-toxic with limited antigenic and side effects. Bioemulsifiers form emulsions and stabilize them. In addition to this, they are biodegradable, less viscous, high polysaccharide containing and non- toxic and can be produced on ecofriendly wastes of agricultural origin. These properties make them useful in food processing and formulation. They can also be manipulated to function at physicochemical extremities like temperature which is essential during cosmetic formulations. Their production by ecofriendly, economical and cost effective processes as compared to synthetic drugs makes them very suitable for environmental as well as medical applications.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (2 comments so far)

Comment By Comment
Manjeet Singh
2014-02-11 10:13:39 757
Interesting! Wish to explore reality
Sonali Bhawsar - Author
2014-02-23 08:15:26 762
Thanks! Lot of planning and scale up experiments would be needed to get expected outcomes under both in vivo and in vitro conditions. Many methods/formulations consisting bioemulsifier/biosurfactants have been patented or underway of development but there is a still long way to go to their acceptance or popularisation of application. All the best for future explorations, they are really wanted!

Leave a Comment   |   Article Views: 8139



Additional Articles:

•   Genetics of Male Pattern Baldness

•   WHO Guidelines For Herbal Drugs : Part 3

•   Programming of Peripheral Blood Cells Into Pluripotent Stem Cells.

•   Anti-Aging Thymus Therapy




Latest Articles in "Biotechnology-products" category:
•   How Biotechnology Helps Create Biofuels

•   Enzyme Linked Immunosorbent Assay (ELISA): Procedure, Applications, Types

•   Biotechnology in the Manufacturing of Detergents

•   Marine Biotechnology and its Applications in Making Drugs

•   Agarose Gel DNA Electrophoresis - Applications, Advantages and Disadvantages

•   Biochemistry Analyzers: Uses and Types

•   Biomarkers and Diagnosis of Diseases

•   Trends in Biotech Engineered Vaccines

•   Biotechnology and Cosmetics

•   Technique of Gene Gun

•   Biotechnology in the Manufacture of Paper

•   Importance of Biofuels or Biodiesels and How they are produced.

•   Mussel Biopolymers: A Cloning Approach

•   Anthrax Detection Device and Toxic Mold Detection Device

•   Recombinant DNA Technology and the Pharmaceutical Industry

•   Process of Electroporation: Definition and Applications

•   Production of Recombinant Human Growth Hormone Somatotropin

•   Somatic Cell Fusion- A Biotechnology Technique

•   Recombinant Protein Expression System



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us