Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Bioenergy and Bioproducts through Bacterial Quorum Sensing

BY: Jyotsana Prakash | Category: Environmental-Biotechnology | Submitted: 2016-08-31 02:06:56
       No Photo
Article Summary: "A unique bacterial communication system called as Quorum Sensing (QS) operates at high cell densities. QS allows them to express certain phenotypes, such as biofilm formation, which can be exploited for producing value added products - bioenergy and bioproducts from biowastes..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Bioenergy and Bioproducts through Bacterial Quorum Sensing
Authors: Jyotsana Prakasha,b, Shikha Koula,b, Subhasree Raya,b, Ravi Kumar a, Vipin Chandra Kaliaa,b
aMicrobial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi-110007.
bAcademy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi- 110001.

Fermentation technology has made significant advancements in the field of biofuel production using microbial systems. The most attractive is the bio-waste to energy: bio-hydrogen (Bio-H2), bio-diesel, bio-ethanol, biomethanation, butanediol, etc. using diverse microbes (Porwal et al., 2008; Patel et al., 2015; Kumar et al., 2015; Kalia et al., 2016).


The bio-wastes as feed, however, are limited by the fact that they are accompanied by inherent bacteria as contaminants. In order to retain large number of bacteria of interest within the bioreactor, we need to immobilize them. Biofilms have the capacity to retain large number of bacteria and act as natural immobilizing agents. These biofilms can be formed by the bacteria only under specific conditions of high cell densities (Hema et al., 2015; Kaur et al., 2015). This cell density dependent phenomenon is known as quorum sensing (QS) (Kalia, 2013). These biofilms can be exploited as efficient and economical bacterial support systems for producing bioenergy from biowastes.

Bio-H2 has been recognised as the cleanest fuel of the future. A wide range of microbes have ability to produce H2 from different substrates including bio-wastes. This bio-waste to energy process has attracted the attention of a large number of researchers (Patel et al., 2013). H 2 yields have been found to be quite low and virtually stagnant in a narrow range of 0.3 to 3.8 mole/mole hexose sugars like glucose (Patel et al., 2012). Efforts to retain large bacterial population within the bioreactors have proven effective in enhancing H2 yields. An obviously effective approach has been to immobilize H2-producers on different support materials (Patel et al., 2010). However, a more innovative strategy can be the use of self-flocculating or biofilm forming bacteria. Within the bioreactor, exopolysaccharides (EPS) secreting microbes allow large population of bacteria to be entrapped within the mucilage, which are thus prevented from being washed away. Among a number of potential H2-producers, quite a few of them have an ability to express QS mediated biofilm formation, which include bacterial species belonging to Bacillus, Clostridium, Streptococcus, Sinorhizobium, Enterobacter, Klebsiella, Caldicellulosiruptor and Escherichia (Kalia and Purohit, 2008). Co-cultures of thermophillic bacteria, Caldicellulosiruptor species have been used for biofilm formation to enhance H2 production. The two bacteria together resulted in 2.5 times enhanced H2 yield and 5 times higher H2 productivity to the tune of 20 mmol/L/h at a dilution rate of >1.0h-1 in Up-flow anaerobic reactors, in comparison to individually employed cultures (Pawar et al., 2015).

Biodiesel and other Bioproducts:

Apart from H2, QS has also been reported to be of use in bioethanol and biodiesel production processes. A 50% enhancement in bioethanol production by Zymomonas mobilis was proposed to be under the influence of exogenously added QS signals (AI-2). Induction of biodiesel production process by algal cells was demonstrated by incorporating QS like mechanism into Escherichia coli. This E. coli system in symbiotic association with algae allowed the later to sense their high cell density, which triggered the inhibition of nitrogen fixation genes leading to nitrogen stress. This acted as a switch to induce biodiesel production in algae (Wyss, 2013). QS can be exploited for various other value added compounds such as acetic acid. Acetic acid metabolic pathway in Gluconacetobacter intermedius is under the control of GinI/R QS system (QSS). Blocking the QSS resulted in increased bacterial growth rate in ethanol rich medium, which consequently led to enhanced acetic acid production (Lida et al., 2008). In the work on engineering of the nitrogen flux to convert proteins to biofuels, it was shown that the deletion of QS genes luxS or lsrA resulted in increased isobutanol production. Butanediol is another value added product whose synthesis is controlled by AHLs produced by Aeromonas hydrophila. It prevents acidification of the media, which is sensed by bacteria. As it is likely to inhibit bacterial growth, it shifts its metabolism to butanediol production (Van Houdt et al., 2007).

Fuel Cells

Researchers are looking for novel energy sources through the use of microbial fuel and electrolysis cells (MFCs and MECs). There is a need to reduce the operational costs and make them more robust. One of the strategies is to target efficient biofilm production, the most important component of the MFC. Generation of bioelectricity by MFCs and H2 and biomethane by MECs require prevention of microbial dispersion from the biofilm. Thus, we need to induce QSS mediated biofilm formation for efficient performance of these fuel cells (Zhou et al., 2013). In MFCs, increase in microbial phenazines or pyocyanin synthesis, which act as electron shuttles has been reported to improve bioelectricity output. This has been achieved by modulation or making direct use of RhlI/R QS circuit in Pseudomonas . Over-production of phenazines in Pseudomonas resulted in ̴1.7 times more output of bioelectricity as compared to wild type strains (Dantas et al., 2013). An AND logic gated MFC has been constructed in Shewanella oneidensis MR-1, amtrA knockout mutant, in which electrons exchange pathway mediated by c-type cytochromes is blocked. The engineered MFC contained IPTG (Isopropyl β-D-1-thiogalactopyranoside), controlled Ptac promoter and Ptac controlledLuxR expression such that electricity output is generated only in the presence of both the signals (AHLs and IPTG) (Hu et al., 2015).


1. Dantas G, Sommer MOA, Degnan PH, Goodman AL. Experimental approaches for defining functional roles of microbes in the human gut. Annu Rev Microbiol. 2013;67:459-75.
2. Hema M, Balasubramanian S, Princy SA. Meddling Vibrio cholerae murmurs: a neoteric advancement in cholera research. Indian J Microbiol. 2015; 55:121-30.
3. Hu Y, Yang Y, Katz E, Song H. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun. 2015;51:4184-7.
4. Kalia VC, Prakash J, Koul S. Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol. 2016;56:113-25
5. Kalia VC, Purohit HJ. Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol. 2008;35:403-19.
6. Kalia VC. Quorum sensing inhibitors: An overview. Biotechnol Adv. 2013; 31:224-245.
7. Kaur G, Rajesh S, Princy SA. Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol. 2015; 55:349-57
8. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC. Biodiesel industry waste: A potential source of bioenergy and biopolymers. Indian J Microbiol. 2015;55:1-7.
9. Lida A, Yasuo O, Sueharu H. Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius. J Bacteriol. 2008;190:2546-55.
10. Patel SKS, Kalia VC. Integrative biological hydrogen production: an overview. Indian J Microbiol. 2013;53:3-10.
11. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol. 2015;176:136-41.
12. Patel SKS, Purohit HJ, Kalia VC. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy. 2010;35:10674-81.
13. Patel SKS, Kumar P, Kalia VC. Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy. 2012;37:10590-603.
14. Pawar SS, Vongkumpeang T, Grey C, van Niel Ed WJ. Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity. Biotechnol Biofuels. 2015;8:19.
15. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, et al. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol. 2008;99:5444-51.
16. Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev. 2007;31:407-24.
17. Wyss SC. Design of a cross-domain quorum sensing pathway for algae biofuel applications. Doctoral dissertation, Ohio University. 2013.
18. Zhou M, Wang H, Hassett DJ, Gu T. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biot. 2013; 88:508-18.

About Author / Additional Info:
Researchers in Microbial Biotechnology and Genomics at CSIR-IGIB, Delhi.

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 1242

Additional Articles:

•   Biodiversity of Soil Nematodes and their role in Agriculture

•   Genome-Wide Association Study: SNPs to Disease Associations

•   Imperata Cylindrica Mediated Doubled Haploidy technique for Wheat Improvement

•   Effect of Abiotic Stresses on Crop Plants

Latest Articles in "Environmental-Biotechnology" category:
•   Advantages and Disadvantages of Biofuels

•   Phytoremediation For Heavy Metals

•   Biotechnology For a Clean Environment

•   Methods of Wastewater Treatment

•   Steps Involved in Nitrogen Cycle

•   Biotechnology and Environment Protection

•   Greenhouse Effect - Importance and Types

•   Biological Degradation of Xenobiotics

•   Phytoremediation - Greener Approach to Control Pollution

•   Impact of Waste Management

•   Waste Water Treatment Steps: Primary, Secondary and Tertiary Treatment

•   Bioremediation - A Weapon to Tackle Oil Spills

•   Phytoremediation - Use of green plants to remove pollutants

•   The History of Botany | Botanists in Philippines

•   Bioremediation by Cold Tolerant Microbes

•   Cold Adaptation by Microorganisms

•   Succession Stages of Xerosere

•   The Climax Concept - Theories and Categories

•   Succession Stages of Hydrosere

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us