Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Bioremediation by Cold Tolerant Microbes

BY: Shekhar C Bisht | Category: Environmental-Biotechnology | Submitted: 2011-03-07 10:40:17
       Author Photo
Article Summary: "Bioremediation is a process to accelerate the natural biodegradation rates through the optimization of limiting environmental conditions and is an ecologically and economically effective method. Low-temperature biodegradation of organic contaminants in cold ecosystems is a result of the degradation capacity of the indigenous psy.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Bioremediation by cold tolerant microbes

Bioremediation is a process to accelerate the natural biodegradation rates through the optimization of limiting environmental conditions and is an ecologically and economically effective method. Low-temperature biodegradation of organic contaminants in cold ecosystems is a result of the degradation capacity of the indigenous psychrophilic microbial population. They transform or mineralize organic pollutants into less harmful, non-hazardous substances, which are then integrated into natural biogeochemical cycles.

Several remediation schemes have been implemented successfully at petroleum-contaminated sites in the Arctic and Antarctic regions. Successful on-site treatments include biopiles and land farming, which is now well-developed for cold-regions and offers low cost treatment of petroleum-contaminated soils. The most widely used bioremediation procedure in cold soils is biostimulation of the indigenous microorganisms by supplementation of appropriate nutrients (and optimization of other limiting factors, such as oxygen content, pH and temperature control); however, care has to be taken to avoid inhibition of biodegradation due to over fertilization. Bioaugmentation by inoculating allochthonous hydrocarbon degraders has been used as a bioremediation option to treat petroleum contaminated sites in Alaska, Canada, Greenland, and Norway. Bioaugmentation with non-indigenous or genetically modified/engineered microorganisms is banned in Antarctica, Norway, Iceland, and. The construction of psychrophiles with specific degradative capabilities based on the transfer of the TOL plasmid from the mesophile Pseudomonas putida by conjugation to a psychrophile of the same species; the transconjugant degraded toluene at temperatures as low as 0°C. Recently, the gene coding for a monooxygenase involved in the degradation of aromatic hydrocarbons from the mesophile Pseudomonas stutzeri was recombinantly expressed in the Antarctic Pseudoalteromonas haloplanktis and performance of such strains has still to be proven.

Bioleaching is the extraction of specific valuable metals from their ores through the use of bacteria. Several mines worldwide operate at average temperatures of 8-10°C with satisfactory bioleaching performance. Cold-adapted strains of Acidothiobacillus ferrooxidans mediate the bioleaching of metal sulfides at such temperatures.

Cold-adapted microbial communities able to degrade high amounts of organic compounds within a short time at low temperatures represent a promising source as inocula for low energy wastewater treatment leads to a significant decrease in operational costs. For example, a cold-adapted Arthrobacter psychrolactophilus strain displayed all the features necessary for its use as microbial starter, both from the viewpoint of biosafety and production. At 10°C, the strain induced a complete clarification of a synthetic wastewater turbid medium, it hydrolyzed proteins, starch and lipids, and improved the biodegradability of organic compounds in the wastewater. Another example is low-temperature degradation of phenol, which is the most common representative of aromatic toxic pollutants in a wide variety of wastewaters. Psychrophilic Rhodococcus spp. able to fully degraded up to 12.5 mM phenol at 10°C under fed-batch cultivation; with some strains phenol degradation occurred even at temperatures as low as 1°C. These studies indicated cold adapted bacteria inocula as promising source for accelerated wastewater treatment and also for the construction of biosensors for the rapid monitoring or in situ analysis of pollution.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 5185



Additional Articles:

•   Economic Importance of Bryophytes

•   DNA Fingerprinting Introduction and Applications

•   Proteasomes and Their Biological Significance

•   Genome-Wide Association Study: SNPs to Disease Associations




Latest Articles in "Environmental-Biotechnology" category:
•   Advantages and Disadvantages of Biofuels

•   Phytoremediation For Heavy Metals

•   Biotechnology For a Clean Environment

•   Methods of Wastewater Treatment

•   Steps Involved in Nitrogen Cycle

•   Biotechnology and Environment Protection

•   Greenhouse Effect - Importance and Types

•   Biological Degradation of Xenobiotics

•   Phytoremediation - Greener Approach to Control Pollution

•   Impact of Waste Management

•   Waste Water Treatment Steps: Primary, Secondary and Tertiary Treatment

•   Bioremediation - A Weapon to Tackle Oil Spills

•   Phytoremediation - Use of green plants to remove pollutants

•   The History of Botany | Botanists in Philippines

•   Cold Adaptation by Microorganisms

•   Succession Stages of Xerosere

•   The Climax Concept - Theories and Categories

•   Succession Stages of Hydrosere

•   Bioextraction Mechanisms of Metals From Their Ores



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us