Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Biotechnological Significance of Biodegradation of Bioplastics

BY: Subhasree Ray | Category: Environmental-Biotechnology | Submitted: 2016-10-21 01:52:43
       No Photo
Article Summary: "Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes, where they act as food reserves. Diverse bacteria and fungi produce the enzyme depolymerase to metabolize the PHA. The bio-products generated by PHA depolymerase have important significances, such as biofuels, fuel additives, probiotics, and in pharmac.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Biotechnological Significance of Biodegradation of Bioplastics
Authors: Subhasree Raya,b*, Vipin Chandra Kaliaa,b
aMicrobial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi-110007.
bAcademy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi- 110001.


Introduction

Bioplastics, such as Polyhydroxyalkanaotes (PHAs) are produced by many microbes to store excess carbon as food reserve, under adverse conditions. There are a host of microbes which have the ability to metabolize PHA with the help of the enzyme called as Depolymerase.

Biodegradation of PHAs

The PHA biodegradation involves extracellular and intracellular depolymerizing enzymes.

Bacterial PHA depolymerases

Intracellular PHA depolymerases have been reported in Alcaligenes, Comamonas, Pseudomonas, Rhodospirillum, Ralstonia, Stenotrophomonas, Streptomyces and Rhodococcus.



Fungal PHA depolymerases

Fungi such as Ascomycetes, Basidiomycetes, Deuteromycetes, Mastigomycetes, Myxomycetes, Zygomycetes, Penicillium and Aspergillus degrade PHB and its co-polymers by extracellular PHB depolymerase.

Biological significance of PHA depolymerases

The bioproducts generated by PHA degradation can be used as biofuels, fuel additives, probiotics, and as pharmaceuticals. The metabolic intermediates such as Hydroxyalkanoic acids (HA) can be used as biofuels and as additives to enhance fuel efficiency. HA have the unique characteristic of being used as drug delivery agents. 3-(HAs) can also be exploited for producing antibiotics - macrolids. PHA degradation products within the gastrointestinal tract can act as biocontrol agents. One of the most interesting feature of HAs and their oligomers is their use as memory enhancers and as bioindicators (Pollution sensors).

References:

1. Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265-2270. doi: 10.1016/j.biortech.2008.11.020
2. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565-6578. doi: 10.1016/j.biomaterials.2005.04.036
3. Kalia VC, Chauhan A, Bhattacharyya G (2003). Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845-846. doi:10.1038/nbt0803-845
4. Kalia VC, Raizada N, Sonakya V (2000). Bioplastics. NISCAIR-CSIR, India
5. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1-7. doi: 10.1007/s12088-014-0509-1
6. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In Microbial factories (Ed. Kalia VC). Springer, New Delhi, pp 105-119. doi: 10.1007/978-81-322-2598-0
7. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543-1561. doi: 10.1016/j.biotechadv.2013. 08.007
8. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015c) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9-16. doi: 10.1016/j.ijbiomac.2015.03.046
9. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:1-7. doi: 10.1007/s12088-014-0457-9
10. Kumar T, Singh M, Purohit HJ, Kalia VC (2009). Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017-2023.doi: 10.1111/j.1365-2672.2009.04160.x
11. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017-2023. doi: 10.1111/j.1365-2672.2009. 04160.x
12. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass and Bioenergy 74:268-279. doi: 10.1016/j.biombioe.2014.12.017
13. Martinez V, de la Pena F, Garcia-Hidalgo J, de la Mata I, Garcia JL, Prieto MA (2012) Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 78:6017-6026. doi: 10.1128/AEM.01099-12
14. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach for hydrogen and polyhydroxybutyrate production. In Microbial factories waste treatment (Ed. Kalia VC). Springer, New Delhi, pp 73-85. doi: 10.1007/978-81-322-2598- 0_5
15. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136-141. doi: 10.1016/j.biortech.2014.11.029
16. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293-300. doi: 10.1007/s12088-016-0595-3
17. Raut S, Raut S, Sharma M, Srivastav C, Adhikari B, Sen SK (2015) Enhancing degradation of low density polyethylene films by Curvularia lunata SG1 using particle swarm optimization strategy. Indian J Microbiol 55: 258-268. doi: 10.1007/s12088-015-0522-z.
18. Ray S, Kalia VC (2016). Microbial cometabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 1-9.doi: 10.1007/s12088-016-0622-4
19. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137-146. doi: 10.1016/S0960-8524(02)00212-2
20. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77-83. doi: 10.1007/s12088-012-0294-7
21. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for the customizing polyhydroxyalkanoates. Indian J Microbiol 55:235-249. doi: 10.1007/s12088-015-0528-6
22. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38



About Author / Additional Info:
Researchers in Microbial Biotechnology and Genomics at CSIR-IGIB, Delhi.

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 670



Additional Articles:

•   Treatment of Genetic Diseases by Gene Therapy

•   Performance of Tomato Seedlings on Different Growing Media.

•   Basil : Cultivation and Collection

•   R&D: The Poignant Loneliness--Brief Case Studies of 8 New Listed Drugs




Latest Articles in "Environmental-Biotechnology" category:
•   Advantages and Disadvantages of Biofuels

•   Phytoremediation For Heavy Metals

•   Biotechnology For a Clean Environment

•   Methods of Wastewater Treatment

•   Steps Involved in Nitrogen Cycle

•   Biotechnology and Environment Protection

•   Greenhouse Effect - Importance and Types

•   Biological Degradation of Xenobiotics

•   Phytoremediation - Greener Approach to Control Pollution

•   Impact of Waste Management

•   Waste Water Treatment Steps: Primary, Secondary and Tertiary Treatment

•   Bioremediation - A Weapon to Tackle Oil Spills

•   Phytoremediation - Use of green plants to remove pollutants

•   The History of Botany | Botanists in Philippines

•   Bioremediation by Cold Tolerant Microbes

•   Cold Adaptation by Microorganisms

•   Succession Stages of Xerosere

•   The Climax Concept - Theories and Categories

•   Succession Stages of Hydrosere



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us