Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

The Emergence of Microbial Biosurfactants and Their Applications

BY: Gayathri Raghavan | Category: Environmental-Biotechnology | Submitted: 2013-03-18 23:07:19
       No Photo
Article Summary: "Microbial surfactants, called bioemulsifiers, are structural compounds that contain a lipophilic and a hydrophilic moiety inside the same molecule. The hydrophilic group (polar group) is derived from alcohol groups of neural lipids or ester, amino acids or carboxylate group of fatty acids phospholipids(phosphate portions), or.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Introduction

Microbial surfactants, called bioemulsifiers, are structural compounds that contain a lipophilic and a hydrophilic moiety inside the same molecule. The hydrophilic group (polar group) is derived from alcohol groups of neural lipids or ester, amino acids or carboxylate group of fatty acids phospholipids(phosphate portions), or carbohydrates of glycolipids.

While, the lipophilic part of the compound is constructed by the hydrocarbon chain of fatty acid. The roles of a biosurfactant include emulsification of water insoluble substrates and exertion of antimicrobial effects on competing microbes.

Microbial Biosurfactants- Examples

Some examples of microorganisms belonging to the glycolipids group that produce important biosurfactants include:
(1) Pseudomonas sp., produces the bioemulsifier rhamnolipids;
(2) Serratia rubidae, produces the Rubiwettins; and
(3) Mycobacterium leprae, produces the Trehalose lipids.

Examples of microorganisms belonging to the neutral and polar lipid group producing important biosurfactants include:
(1) Corynebacterium lepus, which produces fatty acids; and
(2) Rhodotorula sp., which produces polyol lipids.

The examples of microorganisms belonging to the amino acid group producing biosurfactants include:
(1) Pseudomonas fluorescens, produces Viscosin;
(2) Bacillus subtilis, produces surfactin; and
(3) Candida lipolytica, produces liposan.

Examples of microorganisms belonging to the polysaccharide lipid group producing bioemulsifiers include:
(1) Acinetobacter calcoaceticus, which produces emulsan; and
(2) Streptococcus sanguis, which produces lipoteichoic acid.

Microbial Biosurfactants- Today

The global market for detergents in on the rise and the world wide surfactants consumption is expected to reach an approximate 10 billion kilogram by the year 2000.

Biosurfactants are capable of replacing chemically synthesized compounds in different areas of applications. Biosurfactants are less toxic when compared to synthetic tensides; are biodegradable; and are produced on renewable substrates. Further, the physical properties and the chemical structure of biosurfactants can be altered by biological, chemical, or genetic manipulation allowing scientists to tailor the surfactants to specific needs. The key advantages of microbial biosurfactants in industrial applications include: low cost process, high-quality substrate yield, and easy end product recovery.

Pseudomonas aeruginosa Rhamnolipids Composition

The glycolipid biosurfactant containing rhamnose produced by Pseudomonas aeruginosa was described in the year 1949. Rhamnolipid 1 is found in culture supernatants of P. aeruginosa, while rhamnolipid 2 is observed during the cultivation of P. aeruginosa.

Rhamnolipids 3 and 4 are found in the culture supernatants of the resting cells. Rhamnolipid 1 and 2 derivatives of methyl ester were extracted from P. aeruginosa strain 158. The presence of fatty acid homologues in the rhamnolipids were identified by electron impact mass spectrometry and fast atom bombardment. The glycosyl moiety is the building block of rhamnolipids whereas the structural difference depends on the fatty acid residues.

Rhamnolipids Biosynthesis

The biosynthesis of P. aeruginosa rhamnolipids initially involved the in vivo method by using important radioactive precursors such as [14C] glycerol and [14C] acetate. The first putative biosynthetic pathway was proposed by Burger. In this pathway, the rhamnolipid synthesis is preceded by the sequential glycosyl transfer reactions, catalyzed by the thymidine-diphospho-rhamnose (TDP-rhamnose) acting as the rhamnosyl donor, while the

L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (β-hydroxydecanoic acid) acts as the acceptor. The TDP-rhamnose occurs in majority of gram negative bacteria. The TDP-glucose is formed via several enzymatic steps and is converted to TDP- rhamnose by the reduction, dehydration, and epimerization of the glycosyl moiety.

The β-hydroxydecanoic acid (acceptor substrate) has two formation routes: (1) it rises as a fatty acid degradation intermediate by the β-oxidation cycle. This route is the predominant pathway during the growth on n-alkanes; (2) it occurs as a de novo fatty acid biosynthesis intermediate.

The P. aeruginosa rhamnolipids are produced depending on several environmental and nutritional factors. Rhamnolipids synthesis is found maximum during the stationary growth phase and the late exponential phases of growth. The synthesis takes place under nitrogen limitation conditions thereby demonstrating a direct relationship between improved biosurfactant production and increased glutamine synthetase. Further, rhamnolipid synthesis is also favored non-limiting phosphate concentrations. Among the many mineral salts found in the culture medium, iron has the biggest impact on rhamnolipid synthesis. A three-fold increase in the production of rhamnolipid with no profound changes in the biomass yield was reported after a change to iron-limiting conditions.

Conclusion

Biosurfactants have potential applications in the industrial sector such as emulsification, wetting, emulsion stabilization, phase separation, foaming, corrosion-inhibition, viscosity reduction, de-emulsification, and solubilization. Surfactants area also used in protective coatings, and paints, for processing petrochemical products (textile industry), and for depollution purposes.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 3021



Additional Articles:

•   Electronic Data Capture - An Essential Element in the Field of DM

•   Paradigm Shift in Botanical Crop Protection Agents

•   Pickling Process - Preserving Foods

•   Biofuels - A Solution for Non Renewable Sources




Latest Articles in "Environmental-Biotechnology" category:
•   Advantages and Disadvantages of Biofuels

•   Phytoremediation For Heavy Metals

•   Biotechnology For a Clean Environment

•   Methods of Wastewater Treatment

•   Steps Involved in Nitrogen Cycle

•   Biotechnology and Environment Protection

•   Greenhouse Effect - Importance and Types

•   Biological Degradation of Xenobiotics

•   Phytoremediation - Greener Approach to Control Pollution

•   Impact of Waste Management

•   Waste Water Treatment Steps: Primary, Secondary and Tertiary Treatment

•   Bioremediation - A Weapon to Tackle Oil Spills

•   Phytoremediation - Use of green plants to remove pollutants

•   The History of Botany | Botanists in Philippines

•   Bioremediation by Cold Tolerant Microbes

•   Cold Adaptation by Microorganisms

•   Succession Stages of Xerosere

•   The Climax Concept - Theories and Categories

•   Succession Stages of Hydrosere



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us