Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Epigenetic Phenomena

BY: SUNIL KUMAR, S.V. | Category: Genetics | Submitted: 2013-04-03 04:00:53
       Author Photo
Article Summary: "Epigenetic refers to heritable changes in gene expression not attributable to nucleotide sequence variation. Epigenetic mechanisms include DNA methylation, genome imprinting and dosage compensation.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Epigenetic refers to heritable changes in gene expression not attributable to nucleotide sequence variation. Epigenetic mechanisms include DNA methylation, genome imprinting and dosage compensation.

DNA methylation is essential for development of mammals. DNA cytosine methyltransferase catalyses the addition of methyl groups to the 5-carbon position of cytosine ring in DNA, which alters the chromatin structures. These epigenetic "markers" on DNA can be copied after DNA synthesis, resulting in heritable changes in chromatin structure. Methylation of CpG-rich promoters is used by mammals to prevent transcriptional initiation and to ensure the silencing of genes on the inactive X chromosome, imprinted genes, and parasitic DNAs. Methylation has significant role in tissue-specific gene expression. There is also tantalizing evidence that normal chromosome structure may be affected by methylation and that human diseases, including cancer, are caused and impacted by abnormal methylation.

Chromatin structure plays an important role in the expression of genes. Less condensed euchromatic regions are the most accessible for transcription, where as highly condensed heterochromatic regions are refractory to transcription. Thus, the same gene can be either well expressed or transcriptionally silent depending on whether it lies in euchromatic or heterochromatic region resulting in epigenetic variations.

Allopolyploid speciation is wide spread in plants, the molecular requirements for successful orchestration of coordinated gene expression of two divergent and reunited genomes in single nucleus have significant role in evolution of novel allopolyploids. It is likely that the evolutionary success of allopolyploidy is in part attributable to epigenetic phenomena.

References:
1. Anon., 2006, Unfinished symphony. Nature, 441 (90):143-145.

2. Bao, L. and Jonathan, F. W., 2003, Epigenetic phenomena and the evolution of plant allopolyploids. Molecular phylogenetics and Evolution, 29: 365-379.

3. Judith, B., 2004, DNA methylation and epigenetics. Annu. Rev. Plant Biol., 55:41-68.

4. Peter, A. J. and Daiya, T., 2001, The role of DNA methylation in mammalian epigenetics. Sci., 293:1063-107.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2950



Additional Articles:

•   Current Preview on Lipase With Its Immense Applications

•   Coral Bacteria - Common Bacterial Diseases

•   Laboratory Data For Blood Test

•   Cell to Cell Communication and Social Networking in Plant Pathogenic Bacteria




Latest Articles in "Genetics" category:
•   The Science and History of Genetics. How It Predicts the Genetic Code

•   Telomeres: Is It Responsible For Ageing and Cancer?

•   Human Genetic Engineering,its Methods and Ethics

•   Gene Mutation And Cancer

•   DNA Technology Used in Forensics

•   DNA Fingerprinting: Uses and Methods Involved

•   Treatment of Genetic Diseases by Gene Therapy

•   Human Intelligence and Genetics

•   Ethical Issues Related to Human and Animal Cloning

•   Mitochondrial DNA and Forensic

•   DNA Footprinting and Gene Sequencing

•   Biotechnology and Types of Cloning

•   Designer Babies:Method and Ethical Issues

•   Prenatal Diagnosis: Non-invasive and Invasive Techniques

•   What are the Benefits of Genetic Engineering?

•   The Advantages and Disadvantages of Genetic Engineering in Humans

•   Types of Genetic Disorders

•   Bovine Somatotropin: A Growth Hormone

•   Advantages and Disadvantages of Genetically Modified Food



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us