Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Wide Hybridization: Barriers and Breeding procedures

BY: Dr. Satish Kumar | Category: Genetics | Submitted: 2015-05-19 11:31:53
       No Photo
Article Summary: "Hybridization between individuals from different species, belonging to the same genus or two different genera, is termed as distant or wide hybridization..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Authors: Satish Kumar, Vikas Gupta and Chandra Nath Mishra
ICAR-Indian Institute of Wheat and Barley Research, Karnal-132001 Haryana

Hybridization between individuals from different species, belonging to the same genus or two different genera, is termed as distant or wide hybridization. When individuals being crossed belong to species from two different genera, it is referred as intergeneric hybridization. When individuals from two distinct species of the same genes are crossed it is known as interspecific hybridization.


Several wild species are not crossable with the commercial cultivars due to various isolation barriers. The isolation barrier may be pre-zygotic that prevents fertilization and zygote formation or postzygotic in which fertilization takes place, hybrid zygotes are formed but they are inviable or give rise to weak or sterile hybrids.

Pre-zygotic barriers

1. Failure of pollen germination
2. Slow growth of the pollen tube
3. Inability of the pollen tube to reach the ovary
4. Arrest of pollen tube in the style, ovary and ovule.
These are due to genic differences or differences in ploidy between species.

Post-Zygotic barriers

1. Hybrid inviability and weakness leading to chromosome elimination, lethality and embryo abortion.
2. Hybrid sterility
3. Hybrid breakdown with weak or sterile individuals in F2 owing to recombination of the gene complements of the parental species.

Techniques to overcome isolation barriers

Pre zygotic barriers can be overcome by the following techniques.

i. Mechanical removal of style followed by pollination of the exposed stylar end
ii. Bud pollination.
iii. Use of growth hormones such as GA3, IAA, NAA etc.,
iv. Invitro fertilization
v. Protoplast fusion
vi. Chromosome doubling before hybridization.
vii. Adopting bridging species technique

Post zygotic barriers can be overcome by

i. Chromosome doubling (Amphidiploidy)
ii. Back crossing
iii. Embryo rescue
iv. Tissue culture techniques.

Breeding procedure for wide hybridization

1. Backcross breeding

When interspecific crosses between two species of varying ploidy level are made invariably the hybrids are sterile. By chromosome doubling with application of Colchicine, amphidiploids can be produced. Such amphidiploids are fertile.

Cultivated tobacco, Nicotiana tabacum (2n=24) which crossed to N. glutinosa (2n=12) produced sterile F1 and by chromosome doubling an amphidiploid N. digluta (2n=36) was produced. This was reasonably fertilize with N. tabacum. By repeated backcrossing, a mosaic resistant line with 2n=24 was developed.

2. Amphidiploidy

The manmade cereal Triticale is an intergenic allopolyploid combining Triticum aestivum (Wheat 2n=42) and Secale cereale (rye -2n-14).

Rapanobrassica was synthesised by crossing Raphanus sativus, radish (2n-18) and Brassica olereaceae cabbage (2n-20).

3. Bridging species Technique

When direct crosses between two species are difficult, a third species is used in such crosses. Hexaploid wheat, Triticum aestivum (2n-42) does not cross with diploid species. When T. dicoccoides (2n=28) is crossed to Aegilops umbellulata (2n=14) and an amphidiploid was produced it crossed with T. aestivum (2n=42). Nicotiana sylvestrin (2n=24) is the bridging species to transfer nematode resitance from N. repanda (2n-48) to N. tacbaccum (2n=48).

4. Alien-addition and Alien substitution lines

By crossing two unrelated species of different ploidy level and doubling the chromosome number of the sterile F1, fertile amphidiploids are obtained. The amphidiploid in backcrossed to the cultivated species repeatedly twice or thrice and them selfed. In the selfed progeny, plants with one chromozome pair from the donor species in addition to the normal diploid chromosome of the parent species may be present and the y are called alien -addition lines. In certain other plants, one chromosome pair of the donor species may substitute one chromosome pair of the parent species when they are called alien substitution lines. By adopting the above methods, mosaic resistance from Nicotiana glutinosa (2n=24) was transferred to N. tabaccum (2n-48) by alien addition (2n=48+2) and alien substitution (2n=48-2+2).

About Author / Additional Info:
I am working as a Scientist in ICAR- Indian Institute of Wheat and Barley Karnal, Haryana under ICAR, New Delhi.

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 5883

Additional Articles:

•   DNA Fingerprinting of Plants: An Analysis of Various Methods

•   Functional Foods

•   Impact of Phaseolus Vulgaris Extract on Cyanobacterial Growth

•   Granulation : A Major Threat in Citrus Production

Latest Articles in "Genetics" category:
•   The Science and History of Genetics. How It Predicts the Genetic Code

•   Telomeres: Is It Responsible For Ageing and Cancer?

•   Human Genetic Engineering,its Methods and Ethics

•   Gene Mutation And Cancer

•   DNA Technology Used in Forensics

•   DNA Fingerprinting: Uses and Methods Involved

•   Treatment of Genetic Diseases by Gene Therapy

•   Human Intelligence and Genetics

•   Ethical Issues Related to Human and Animal Cloning

•   Mitochondrial DNA and Forensic

•   DNA Footprinting and Gene Sequencing

•   Biotechnology and Types of Cloning

•   Designer Babies:Method and Ethical Issues

•   Prenatal Diagnosis: Non-invasive and Invasive Techniques

•   What are the Benefits of Genetic Engineering?

•   The Advantages and Disadvantages of Genetic Engineering in Humans

•   Types of Genetic Disorders

•   Bovine Somatotropin: A Growth Hormone

•   Advantages and Disadvantages of Genetically Modified Food

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us