Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Insights Into Structure of RNA Polymerase Enzyme

BY: Sandhya Anand | Category: Industry-News | Submitted: 2013-11-30 05:09:30
       No Photo
Article Summary: "Researchers have isolated and studied the structure of bacterial Polymerase I revealing the structure-function relationship. Various domains and subunits and their role in structural stability has been accessed via crystallography methods..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Insights into the detailed structure of the RNA polymerase I enzyme have been provided by Fernandez-Tornero et al.and Engel et al. The discovery's significance lies in the fact that RNA polymerase I, shortly called Pol I is responsible for the synthesis of ribosomal RNA which in turn is inevitably required protein production. Pol I is thus essential for cell survival, growth, as well as proliferation. Any enzyme malfunction can therefore cause cell death or uninhibited proliferation as in cancer cells.

RNA polymerases are transcriptional enzymes facilitating the transcribing of DNA to RNA by controlling the movement of a DNA template along their active site. In eukaryotes, there are several types of RNA Polymerases each of which is specialized for unique RNA production. Pol I is the most significant among the RNA Polymerases.

The functional difference of Polymerases is mainly due to the subunit complexes which influence the ability of the enzyme to transcribe specific genes. The complete 14 subunit yeast Pol I structure revealed key structural features associated with its specific function of transcription of ribosomal RNAs.

A Zinc- Carbon domain is present at the carboxy terminus of A12.2 subunit of Pol I which gets inserted into the active site of the enzyme. This domain is essential for removing faulty RNA sequences to enhance transcription efficiency. The subunit is highly stable compared to its counterparts in Pol II and Pol III. The stability in turn is attributed to the presence and interaction of the Zinc-Carbon domain with the dimerization domain.

The study has revealed the contact points and types of interactions which offer stability for the subcomplex. Transcription by Pol I enzyme is facilitated by a closed clamp like structure which moves along the DNA template sequence which is to be transcribed. Crystallographic studies revealed the structure of the A43 -A 14 subunit complex which forms this closed clamp and thereby contributing to the higher efficiency of Pol I. The parallel functional subcomplexes in Pol II and Pol III are transient in nature.

The crystal structure isolated was found to be a dimer in which stalk of one unit gets inserted into the DNA binding cleft of the other. The dimers also showed a wide cleft facilitating its anchoring of RNA-DNA template. The Pol I crystal isolated by Femandez and colleagues exhibited varying degree of cleft widening. This has been found to be relative differences in pivoting of two modules 'core' and 'shelf' which in turn is due to the presence of large subunits A 135 and A 190 near the active site.

Engel's study focussed on inhibited bacterial Pol I enzyme which revealed similar pivoting and cleft widening variations. Further studies are needed to understand the process of formation of pre initiation complex, mechanism of elongation and termination of transcription along the DNA template. Such a study would require the detailed structural variations of Pol I enzyme when bound to regulators of transcription especially with reference to the cleft widening.

However, this study has been an important step in revealing the exact nature of transcription of general eukaryotic polymerases especially Pol I. Further revelations can help scientists to search for transcriptional factor based cure for genetic diseases such as cancer.

About Author / Additional Info:

1. Fernandez-Tornero, C. et al. Nature 502, 644-649 (2013).
3. Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D. & Cramer, P. Nature 502, 650-655 (2013).
3. JOOST ZOMERDIJKl, Pivotal findings for a transcription machine, Nature 502, 629 (2013)

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 1672

Additional Articles:

•   Medical Genetics: Its Introduction and Scope

•   Phytoremediation - Applications, Advantages and Limitations

•   New Dimension of Scope and Career in Microbiology

•   Bio-Insecticide - Beauveria Bassiana and its Use in Agriculture

Latest Articles in "Industry-News" category:
•   The New and Easy Way to Obtain P450-metabolites and N-glucuronides For Metabolit

•   Use of Jelly Fish in Preventing Bioterrorism

•   Latest Biotechnology Industry News and Pharmacy News

•   Personalised Cancer Vaccine in a Week

•   First Synthetic Organism

•   Human Sperm Created Using Embryonic Stem Cell

•   Gut Microbiota May Play a Role in Host Adiposity

•   Latest in Pharmaceuticals : Sleep Drug: MK-4305 and Plastic Antibodies

•   Biotech News From the World of Medicine

•   Contribution of Biotechnology to the Latest Trends in Cardiac Care

•   Biotechnology in the Manufacture of Textiles

•   Biotechnology Companies in South Africa: Human Health

•   Joule Unlimited - Pioneering Alternate Fuel and its Advantages

•   Starch as Vitamin Carrier - A New Technology

•   Phase IV Studies - A Market With a Proactive Approach for Growth of a Pharmaceutical Firm

•   ISO-9000 Requirments, Effectiveness and Advantages

•   Inoculum Preparation in Seed Lab of Fermentation Industries

•   Enjoy the Benefits of Drinking a Cup of Coffee

•   Understanding the Team Insurance Policy (Group Insurance)

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us