Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Methods of Determining Transcription Start Site

BY: Anshul Watts | Category: Microbiology | Submitted: 2017-03-06 06:07:47
       No Photo
Article Summary: "Transcription start site (TSS) determination is very important for understanding gene structure and gene regulation. Presently TSS is determined by primer extension method, S1 nuclease mapping and RACE (RAPID AMPLIFICATION OF cDNA ENDS) techniques, but among these RACE is the most common method used to determine TSS.."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Methods of Determining Transcription Start Site

Authors: Anshul Watts1, Archana Watts2, Kishor U Tribhuvan1 , Era Vaidya Malhotra1 and Rajendra Prasad Meena1
1 ICAR-National Research Centre On Plant Biotechnology, New Delhi-110012
2 ICAR-Division of Plant Physiology, Indian Agriculture Research Institute, New Delhi-110012


Introduction

Understanding the regulation of gene is one of the most important challenges for molecular biologists. Gene regulation occurs at different levels viz chromatin, transcriptional, post-transcriptional, translational, post-translational etc. Among these transcriptional is the most important level of gene regulation. RNA polymerase binds to specific DNA sequences known as promoter and initiate transcription from a specific site. For some genes transcription starts from multiple sites. Transcription start site (TSS) is the first nucleotide of DNA from where transcription of gene starts i.e. RNA synthesis and it is indicated by +1 sign. In terms of mRNA it is the first nucleotide to which 5ʹ cap (7 methyl guanosine) is attached for stabilizing newly synthesized mRNA. The sequences after the transcription start site in DNA are known as downstream sequences and usually indicated by the + sign. The sequences before the transcription start site are known as upstream sequences and usually indicated by - sign.

BA_3812_1

Fig. 1 Structure of a typical eukaryotic gene

Importance and features of TSS
For molecular biology experiments it is important to determine the TSS because it will help in certain aspects like 1) mapping of 5ʹ end of the gene 2) Determining gene structure 3) predicting and locating the promoter of the gene 4) understand role of promoter in gene regulation because RNA polymerase bind upstream to TSS and initiate transcription.

In case of mammalian genome TSS region is well characterized while it is not in the case of plants. However GC skewed (=(C-G)/(C+G)) around the TSS is conserved both in case of Arabidopsis and rice. It is also reported that highly expressed genes are having more GC skew as compared to the genes which are expressing very low. So GC skewed is related to transcription (Fujimori, S. et. al. 2005). Additionally, CpG island which is a important feature of predicting mammalian TSS is not located in the promoter region of the plant genome. When nucleotide features around upstream and downstream TSS were compared from single loci then they were showing differences.

Methods for determination of TSS

1. Primer extension method

In this method total RNA is isolated from the tissue and stage in which gene of interest is expressing then a primer is designed complementary to the RNA and with the help of reverse transcriptase cDNA is synthesized. This ss cDNA is then run on denaturing PAGE gel. The length of the ss cDNA reflects the distance of the TSS from the 5ʹ end of the primer.

BA_3812_2

Fig. 2 Primer extension method
2. S1 nuclease mapping method
Mapping of TSS by S1 nuclease is another method used for determining TSS. S1 nuclease cuts single stranded DNA or single stranded RNA but it does not cut double stranded DNA, double stranded RNA or DNA-RNA hybrid. Additionally, this method requires certain information like gene structure, gene sequence, restriction map of the gene and upstream sequence of the gene. Firstly primers are designed from the first exon and several bases upstream to the first exon which is in intergenic region. Using PCR these primers are amplified and then by the help of different restriction enzymes these primers are cut at both ends and radiolabelled at one end. One of strand is degraded while other radiolabelled strand is retained. Then total RNA is isolated from the cell or tissue in which gene of interest is expressing. The radiolabelled DNA probe is hybridized with mRNA and then treated with S1 nuclease. S1 nuclease cuts ssDNA and RNA but not the DNA-RNA hybrids. RNA is degraded in the following step and ss cDNA along with probe is run on a gel. By the comparison of these two bands TSS is then determined.

BA_3812_3

Fig.3 S1 nuclease mapping method
3. 5ʹ RACE (RAPID AMPLIFICATION OF cDNA ENDS)

It is the most common strategy used to determine the TSS. RACE technique was first described by Michael Frohman and Gail Martin. In this technique, first RNA is isolated from the tissue and stage in which the gene of interest is expressing. By use of gene specific primers with the help of reverse transcriptase gene of interest is isolated. Using RNaseA RNA is degraded from the mixture and cDNA is purified. Then with the use terminal deoxynucleotidal transferase enzyme (TdT) and dCTP poly C tail is added at the 3ʹ end of the cDNA. Now this cDNA contains poly C tail at the 3ʹ end. Then an anchor primer is designed, such that it contains poly G and some other arbitrary sequences and some restriction enzyme site for cloning. One primer is designed from gene sequence and the anchored primer is used as second primer for PCR amplification. Another round of PCR can be used using another gene specific primer and anchored arbitrary primer. Then this product is cloned in cloning vector and sequenced. First nucleotide after the G indicates the 5ʹ end of the gene.

BA_3812_4

Fig.4 5ʹ RACE for determination of TSS
One of the modification of RACE is RLM-RACE (RNA Ligase Mediated RACE). In this method first RNA is isolated from the tissue and stage in which gene of interest is expressing. Further, this RNA is treated with alkaline phosphatase (CIP) which removes phosphate from 5ʹ end of DNA, rRNA, tRNA, truncated mRNAs. 5ʹ phosphate of all mRNAs is not removed as mRNA contain 5ʹ cap which protects 5ʹ end. Further, this product is treated with Tobacco Acid Pyrophosphatase (TAP) which removes 5ʹ cap from all mRNAs. Then an adaptor containing 20-30 nt known RNA sequence is added in the reaction mixture and with the help of RNA ligase, these adaptor binds to 5ʹ end of the mRNA. Then one primer designed from adaptor sequence and other primer designed from gene is used to amplify the product. This product is further cloned and sequenced. The first nucleotide after the adaptor sequence denotes the TSS.

BA_3812_5

Fig.5 RLM-RACE for determination of TSS

References:

Fujimori S, Washio T, Tomita M. 2005. GC-compositional strand bias around transcription start sites in plants and fungi. BMC Genomics. 6:26



About Author / Additional Info:
I am currently a scientist at National Research Centre On plant Biotechnology, Pusa Campus, New Delhi-110012

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 553



Additional Articles:

•   Importance of Vermicompost

•   Biological Control of Insect Pests

•   Silver Staining- Developing Photogenic Gels!!

•   DNA Fingerprinting Introduction and Applications




Latest Articles in "Microbiology" category:
•   Isolation and Identification of Bacterial Strain's from Air, Soil and Water

•   Probiotics and its Benefits

•   RNA Editing and its Potential Role in Evolution

•   MicroRNA Engineering for Improved Abiotic Stress Tolerance in Rice

•   Microbe Assisted Management of Post-Harvest Horticultural Produce

•   Engineering Disease Resistance Based on TAL Effectors

•   Genetic Engineering Approaches For Tolerance Against Abiotic Stress

•   Agrobacterium Mediated Gene Transfer: An Overview [PDF]

•   Bacterial Candidates for Disease Suppression in Agro-Horticultural Crops

•   Cell to Cell Communication in Plants

•   Bioplastics - From Microorganisms to Nanotechnology

•   Microbial Amylases, Process Optimization and Industrial Applications

•   Proteomics and its Application in Agricultural Microbiology

•   Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs)



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us