Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

COMPUTATIONAL NANOTECHNOLOGY: Its Goal, Approach, Role and Scope

BY: Muniba Safdar | Category: Nanotechnology | Submitted: 2010-10-26 07:01:28
       No Photo
Article Summary: "What is computational nanotechnology; their goal, approach, role and scope. Computational Nanotechnology is the study, design, operation, analysis and optimization of Nano-scale systems. Moreover, computational nanotechnology enables tools and techniques physics-and-chemistry based simulations..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Computational Nanotechnology is the study, design, operation, analysis and optimization of Nano-scale systems. Moreover, computational nanotechnology enables tools and techniques physics-and-chemistry based simulations. As we know that nanotechnology is implicated with the devices, properties, structures and their applications having specified materials. The design of Nano-scale device includes four main stages:

• Prediction of materials components having chemical and physical properties.
• The fabrication and assembly processes are modeled and characterized.
• Under operational conditions simulated device are analyzed.
• Simulated device operation is controlled and optimized.

Goal:

The definitive goal of computational nanotechnology is to develop theory, models, and large scale simulations. Moreover, computational nanotechnology has inaugurated the scientific basis and as cost-effective designs in meeting outstanding challenges in:

• Nano-electronics (use of nanotechnology on electronic components, specifically transistors) and computing.
• Optoelectronics, photonics (the science of generating, controlling, and detecting photons, especially, visible light and the near-infrared).
• Structural materials.
• Sensors or detectors.

APPROACH:

Coupling of fundamental physics, chemistry, and material sciences, and validation against experiments across time and length scales are held in modeling and simulation. There are various approaches which lead to computational nanotechnology; some of them are listed below:

• DNA systems having electronic transport.
• Chemistry and process modeling of nanotubes (fullerene molecule having a cylindrical shape) and nanowires growth production.
• Carbon nanotubes (CNTs) for fuel and hydrogen storage.
• Design of carbon nanotube (CNT) based mechanical components.
• Nanotubes and sensors (detectors) undergo chemical functionalization.
• Quantum computing.
• Through Nano-pores gene sequencing and polymer translocation.
• Nanotubes composed of boron nitride.
• Mechanical properties of carbon nanotube (CNT).
• To design ultra-small semiconductor devices there is a need of multidimensional quantum simulators.
• Electronic device structures based on carbon nanotube (CNT).

ROLE OF COMPUTATIONAL NANOTECHNOLOGY:

COMPUTATIONAL NANOTECHNOLOGY COULD DESIGN EFFICIENT MATERIAL FOR SOLAR CELLS:


Two major advantages that would make nanotechnology design more efficient at converting light to electricity by combining electrically conductive polymers, metal atoms to form thin films that could lead to solar cells. Studies have shown that computational nanotechnology could play imperative role in future by converting solar energy into electrical energy.

COMPUTATIONAL NANOTECHNOLOGY COULD OVERCOME FLAWS INTO CARBON NANOTUBES TO BUILD CURCUITS:


Researchers have shown that at specific sites cautious introduction of structural defects in carbon nanotubes (CNTs) can direct electrons along specific paths; this will provide a better way to engineer complex electronic circuits from nanotubes.

COMPUTATIONAL NANOTECHNOLOGY COULD SPECIFY SEMICONDUCTOR OR METTALIC GRAPHENE:

Computer simulation studies have shown that on the surface of silicon dioxide if we deposit graphene it will be either a semiconductor or a metal. The deposition of graphene will depend on terminating layer, either passivated with hydrogen atoms or sacked with oxygen atoms.

COMPUTATIONAL NANOTECHNOLOGY COULD OPTIMIZE HIERARCHICHAL PROTEINS:


New computational nanotechnology results reveal mechanical properties of carbon nanotubes (CNTs) that are optimized by hierarchical assembly of smaller protein domains. By optimizing hierarchical protein design it would be helpful in nanotechnology field.

COMPUTATIONAL NANOTECHNOLOGY COULD MEASURE PICOMETERS FOR THE ADVANCEMENT OF NANOTECHNOLOGY:


Recent studies have shown the gains of nanotechnology in electron microscopy (that allows mapping between atoms). This would also beneficial in mapping or localizing electron states.

RESEARCH AND DEVELOPMENT SCOPE OF COMPUTATIONAL NANOTECHNOLOGY:

MSC (material and process simulation center) team has been working on Nano-scale systems (NSS) and NanoSim including the design and simulation of subsequent kinds of Nano scale systems (NNS):

• Nano-scale fuel cells (may clear hydrogen hurdles).
• Nano-scale batteries (to build self-assembled batteries by using viruses).
• Nano-scale sensor (detector) arrays (e.g., electronic noses).
• Nano-scale diodes and transistors (based on semiconductor nanowires, device physics, modeling and simulation).
• Nano-scale springs (to protect expensive smart phones).
• Quantum dot arrays (use of quantum information in science and technology).
• Nano-scale systems having memory schemes.

BACKGROUND FOR COMPUTATIONAL NANOTECHNOLOGY:


Your background regarding computational nanotechnology should be strong enough.
• You should have best command on the tools (i.e. programming like C/C++, supercomputers etc).
• You must have knowledge that how to engineer Nano-devices.
• You have strong background of biology, chemistry and physics (solid-state physics, quantum mechanics, semiconductor device physics).
• You should have mathematical and statistical background. So that quantitative data and population parameters can easily be measured.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 3995



Additional Articles:

•   Advances in Modern Plant Biotechnology

•   Different Methods for Identification of Bacterial Plant Diseases

•   Laboratory Data For Blood Test

•   If You Feel Sluggish on a Daily Basis Here Are a Few Suggestions to Boost Energy




Latest Articles in "Nanotechnology" category:
•   Nanoparticles For Human Health

•   Application of Nanotechnology in Medicine

•   Nanosensors For Security Benefits

•   Silver Nanoparticles Elevates Wound Healing

•   Nanoparticles in Medical Science: Properties and Various Applications

•   Nanotechnology Applications in Medicine, Food Industry and Agriculture

•   Fullerene: Its Definition, Types and Scope

•   Nanophotonics: A Branch of Optical Engineering

•   Nano-biotechnology: A Branch of Nanotechnology

•   Nanotechnology as Applied to Biosciences

•   Respirocytes - A Prognosis From Nanomedicine

•   Biosynthesis of Silver and Gold Nanoparticles

•   DNA Nanotechnology: History and Applications

•   Nanotoxicology: Study of Toxicity of Nanomaterials

•   Nano-Circuits: Composition and its Numerous Approaches

•   Nanomedicine: Its Introduction and Applications

•   Green Nanotechnology: Its Definition, Introduction and Goals

•   Nanostructure: Its Introduction and Various Forms

•   Nanorobotics: An Emerging Field of Nanotechnology



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us