Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS FORUMS PUBLISH ARTICLE
 
 

Glycoconjugated Aroma Compounds - Structure, Analysis and Occurrence in Plants

BY: Gayathri Raghavan | Category: Others | Submitted: 2013-03-19 12:11:52
       No Photo
Article Summary: "The extraction of monoterpene alcohols from rose petals 25 years ago opened a new area of flavor research. Scientists have conducted a plethora of experiments on glycosides and glycosidical aroma compounds. Today, flavorless glycosides that represent the accumulation form of aroma compounds are found in plant tissues and fruits..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Introduction

The extraction of monoterpene alcohols from rose petals 25 years ago opened a new area of flavor research. Scientists have conducted a plethora of experiments on glycosides and glycosidical aroma compounds. Today, flavorless glycosides that represent the accumulation form of aroma compounds are found in plant tissues and fruits. In addition, the non-volatile compounds having the ability to generate volatile compounds are called terpene diphosphates. These phosphate esters (monoterpene biosynthesis intermediates) constitute an aroma reserve (e.g., papaya fruit and marjoram). Since a wide range of precursor compounds have been identified till date, among which a vast majority are glycosidic in nature. Recent analyses of the constituents of the polar plants describe the occurrence of glycoconjugates in plants.

Glycoconjugated aroma compounds


The first monoterpene glucoside was detected in rose petals, which has improved the knowledge on the distribution and occurrence of glycosidically volatile compounds in plants. Glycoconjugated aroma compounds are found in essential-oil plants and non- essential oil-bearing plants. In most cases, the glycosidical flavors exceed the free aroma amount by the ratio 5:1. Glycosides-bearing plant species are now found in more than 60 plant families. Some examples of glycosidical volatiles include: Carum copticum, glycosides found in seeds; and Apium graveolens, glycoside is found in the rhizome.

Precursor Analysis


Glycosidic aroma precursors are extracted from fruit juices, wine, and plant extracts by the selective retention on C18- phase adsorbent (reversed) or on amberlite XAD-2 resin. This is followed by the desorption process of glycosides that are retained using MeOH or EtOAc.

Two lines of investigations are pursued once the precursor concentrate is obtained. In the first approach, an aglycone fraction HRGC-MS analysis is obtained after acid and enzymatic hydrolysis. Depending on the complexity and heterogeneity of the extracted glycoside, a whole new set of chromatographic separation steps are applied to yield the purest form of intact glycoconjugate.

For preliminary separations, the technique of LC is ideally preferred. Some examples include countercurrent chromatography (CCC), preparative HPLC, and size-exclusion chromatography. The CCC technique has been found to have numerous advantages in terms of polar natural products analysis that includes glycosidic aroma precursors.

The CCC technique, also called as all-liquid chromatographic technique, does not use solid sorbents. Instead of employing solid materials, CCC technique primarily relies on inexpensive solvent mixtures. CCC instruments are commercially available and have also been successfully used in flavor precursor research. In most cases, the glycosidic sub-fractions still contain some glycosides mixture. So in order to further purify, the analytical CCC technique or the analytical HPLC technique is used.

Aglycone and Glycone Structures

The aglycone structures that are frequently reported are alkanols (medium-chain) and shikimic acid metabolites, and alkenols; also includes mevalonate-derived substances with 10 monoterpenoids; 13 C13 -norisoprenoids; and 15 sesquiterpenoids (carbon atoms). A typical plant glycoside aglycone is structurally complex and has wide diversity. The carotenoid- derived group of C13-norisoprenoid glycoconjugates was detected upto 1995.

In terms of glycone structure, the sugar part that is directly bound to the aglycone is called a β-D-glucose. This glucose may or may not be substituted by other sugar units. Till date, the components that are outlined as a second sugar unit include α-L-rhamnopyranose, α-L-arabinofuranose, β-D-apiofuranose, β-D-glucose, and β-D-xylopyranose. The important fact is that β-D-glucose is the building block of glycoconjugates and this was based on the rapid development method that determined the overall glycoside content in fruits and wines. This procedure was developed by Williams and consists of the following steps: isolating glycosidic fraction by the selective retention on C 18- phase adsorbent (reversed); acid hydrolysis to liberate glucose; and last, measuring the released glucose using enzyme assay. This method is already employed with the wine industry to develop glycoconjugates in ripening fruit.

Occurrence of Glycosidical Volatiles

Glycosidical volatiles are found in higher amounts during fruit maturation. Indeed, vegetables and several fruits like the grapes have considerably high amounts of bound aroma volatiles when compared to free volatile fraction. The glycosylated aroma compounds differ from free aglycones in two key properties:
(1) they exhibit improved water solubility; and
(2) exhibit decreased reactivity. This could be the reason why glycosylated aroma compounds accumulate in the plant kingdom when compared to free aglycones.

The glycoconjugation process allows better storage in plant vacuoles thereby protecting the plant cells from any toxicity form that is exhibited by a free aglycone.

About Author / Additional Info:


Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 3160



Additional Articles:

•   Vaccine Industry in India

•   Microbes as Vulnerable Source of Proteases

•   Physico-Chemical Properties of Petroleum Polluted Soil Collected From Transport

•   Ethical Issues Related to Human and Animal Cloning




Latest Articles in "Others" category:
•   Biotechnology, Its Techniques and Human Health

•   Techniques of Biotechnology

•   Nanomedicine and Disease Treatment

•   Biotechnology and Livestock

•   Bioinformatics: Combination of Biotechnology and Information Technology

•   Gene Patenting and Its Uses

•   Polymerase Chain Reaction: A Technique of Biotechnology

•   Pharmacogenomics: Benefits and Barriers

•   Human Genome Project: Ethical and Legal Issues

•   Plant and Animal Tissue Culture: Procedure, Benefits and Limitations

•   Therapeutics and Biotechnology

•   Biotechnology: A Revolutionary Field and Biotech Challenges

•   Recombinant DNA Technology

•   Environment and Biotechnology

•   Biosensors: Role in Biotechnology

•   Human Insulin and Recombinant DNA Technology

•   Biotechnology and Its Applications

•   Genetic Engineering and its Methods

•   Types of Gene Mutations - Diseases Caused By Gene Mutation



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us