Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article
 
 
HOME FAQ TOP AUTHORS PUBLISH ARTICLE Nexa Collections (Advt.)
 
 

Metabolic Pathways in Molecular Genetics

BY: Gayathri Raghavan | Category: Biotech-Research | Submitted: 2013-03-10 22:57:51
       No Photo
Article Summary: "Cells derive energy from nutrients to synthesize compounds required for life reproduction and functions. This energy is provided by biochemical reactions that form a biochemical network systems called as metabolic pathways. Molecules that flow through the metabolic pathways are due to the response of environmental stress..."


Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article
     


Introduction

Cells derive energy from nutrients to synthesize compounds required for life reproduction and functions. This energy is provided by biochemical reactions that form a biochemical network systems called as metabolic pathways. Molecules that flow through the metabolic pathways are due to the response of environmental stress. These molecules, known as secondary metabolites, are defensive in nature, such as when a microorganism secretes an antibiotic that kills other competing bacterial species. Bioprocess scientists aimed at capturing the value of a cell's metabolic pathways via identification of end products or valuable intermediates. The primary goal was to develop methods that generate these molecules at high concentrations.

Since the 1950s, random mutation of a DNA uses chemical mutagens or radiation to screen survivors to achieve the desired improvements to its metabolic pathways and to generate targeted products. Techniques in molecular biology are developed since 1975; however, the introduction of microbial genome sequencing in 1995 has dramatically changed this approach. Metabolic pathways can be altered by introducing new genes; modifying the existing ones; or blocking gene expression in an organized way. Microarray techniques allow the screening of altered microbes to check for the desired traits.

Operational and Strategic Control

Metabolic pathways have potential operational and strategic controls. Operational control occurs via built-in governors present in the protein activity, which respond to the concentration and presence of the metabolites. These metabolites regulate enzyme activity expressed by microbes. The cell's ability in regulating genes that direct the allotted resources to generate enzymes and proteins that form the metabolic pathway's functional components achieves strategic control.

In strategic genetic control, gene expression control alters the metabolism rate by altering the enzyme catalysts concentration and determining the presence or absence of a particular metabolic pathway, thus affecting the changes very slowly. While, operational control via feedback inhibition is very fast and occurs when the metabolic pathway product or an intermediate compound interacts with a key enzyme. This occurs either early in the metabolic pathway or at critical branch points in such a manner as to slow down or inhibit the reaction rate. This, in turn, slowdowns the molecule flux via the metabolic pathway.

Auxotrophs

Microorganism that require reduced organic molecules, like amino acids, which cannot be synthesized by them, but are vital for their growth, are known as auxotrophs. The missing amino acids are either supplied as synthetic components or complex media into the culture medium which grows the microorganisms. Growth essential amino acids are given as individual components in the synthetic media. On the other hand, proteins or other sources, such as peptone, steep water, or yeast extract, supply the missing amino acids in a complex media. These amino acids are referred as essential amino acids because they play vital role in good life and health. Humans obtain essential amino acids through diet.

Auxotrophy Process

In the process of auxotrophy, end products and intermediates from microbial metabolism are accumulated by reducing the accumulation of repressive metabolites or inhibitory metabolites inside the cell. Auxotrophs are nutritionally deficient and rely on energy from external sources. Some examples of auxotrophs include Corynebacterium glutamicum and Bacillus subtilis, which produce amino acids in large amounts. Microorganisms are selected, engineered, or controlled to avoid product destruction once feedback inhibition (operational control) and repression (strategic control) are achieved.

Conclusion

There lies various challenges and complexity in directing metabolic pathways to obtain commercially valuable products. This requires the ability to screen millions of microorganisms in quick time, until the desired microorganism with the desired property is identified. Though modern biotechnology deals with the changes done to the genetic makeup of a microbial cell, screening to differentiate cells is still required. Various methods have been successfully employed in identifying the desired cells. Basic microorganism is subjected to chemical mutagens or radiation and undergoes random mutation to identify mutants that offer resistance to feedback repression or inhibition.

With advances in molecular genetics, scientists have now been able to direct enzymatic changes at genetic level. The key objectives of these techniques are to modify a cell's genetic makeup either by adding or deleting or altering gene and their expression. Examples of commercially important products that were developed from microorganisms years ago include penicillin from Penicillium chrysogenum and lysine from Corynebacterium glutamicum. They represent a mature modern biotechnology.

About Author / Additional Info:
An freelancer

Search this site & forums
Share this article with friends:



Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)


Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2654



Additional Articles:

•   Journey to Bacillus Thuringiensis (BT) Crops

•   New Dimension of Scope and Career in Microbiology

•   Role of Functional Markers in Plant Breeding

•   Microbiological Testing and Evaluation




Latest Articles in "Biotech-Research" category:
•   Human Longevity: A Revolution in Biotechnology and Nanotechnology.

•   Nanoparticles as Delivery Device For Gene Therapy

•   Biotechnology as a Tool in Medicine: Focus on Artemisinin

•   Tissue Cells and Skin Cells Reprogrammed Into Embryonic Stem Cells:-

•   Polymerase Chain Reaction (or PCR) - Technique For Amplifying DNA

•   Treatment of Heart Disease With Stem Cells

•   Biological Activities and Bioassays

•   DNA Sequencing: Maxam Gilbert Method

•   PCR Aspects and its Future | PCR versus Cloning

•   Plasmid as Vectors For Plant Transformation

•   Gene Isolation and Characterisation

•   Apoptosis and Cancer: A Review

•   Extraction of Nucleic Acids (DNA and RNA) From Plant Tissues

•   Stem Cells From Bone Marrow and Vein Leftovers Can Heal Damaged Hearts

•   Gene Transfer Techniques: Biolistics, Bacterial and Viral Transformation

•   Breast Cancer: Cactus For Womens Life

•   Mtt Assay: Assess The Viability Of Cell In Culture

•   Medicinal Plants: Source Of Medicine

•   Biotechnology Impact on Alzheimer's Disease



Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 biotecharticles.com - Do not copy articles from this website.

ARTICLE CATEGORIES :
Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  


  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us

web
statistics