Biotech Articles
Publish Your Research Online
Get Recognition - International Audience

Request for an Author Account   |   Login   |   Submit Article

Ecotoxicology and Nanoecotoxicology

BY: Shanky Bhat | Category: Nanotechnology | Submitted: 2012-11-29 02:04:46
       Author Photo
Article Summary: "Nanoecotoxicology helps in assessment of hazard that can be because of nanoparticles..."

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

Ecotoxicological research was rapidly developing due to the pollution of the environment induced by the rapid industrial development (Anne Kahru, Henri-Charles Dubourguier., 2010). Three key elements of nanoparticles toxicity screening strategies have been outlined by Oberdörster et al. (2005a): (i) physicochemical characterization (size, surface area, shape, solubility, and aggregation), elucidation of biological effects involving (ii) in vitro and (iii) in vivo studies. These three key elements were formulated mainly from the point of view of potential effects of nanoparticles on humans. There are clear tendencies of development of both, terrestrial and aquatic ecotoxicology through the movement of traditional ecotoxicology into toxicogenomics (Spurgeon et al., 2008). The most toxic nanoparticles for nematodes and algae were nano ZnO (Anne Kahru, Henri-Charles Dubourguier., 2010). For bacteria, fish and ciliates the most toxic was C60 fullerene and for the crustaceans, nano Ag. It is well known that at nanosize range, the properties of materials vary considerably from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to amplified bioavailability and toxicity (Nel et al., 2006). Indeed, NPs of CuO were up to 50-fold more toxic than particles of bulk CuO towards crustaceans (Heinlaan et al., 2008), algae (Aruoja et al., 2009), protozoa (Mortimer et al., 2010) and yeast (Kasemets et al., 2009). TiO2 and Al2O3 NPs were about twice more toxic than their respective bulk formulations towards nematodes (Wang et al., 2009).

For hazard assessment of NPs quantitative nano ecotoxicological data are required. Currently, assessing the safety of synthetic NPs has become a worldwide issue. The ecotoxicological research on NPs is also supported and promoted by EC science policy. Despite of a growing understanding that synthetic NPs should be evaluated for their potential environmental hazard prior their use in products and subsequent inevitable release into the environment, there are currently few data on the toxicity of nanomaterials to environmentally relevant species, limiting the quantitative risk assessment of NPs. Indeed, nanotoxicology research started in the early 1990s as shown by the first few scientific papers recorded in Web of Science of Thomson Scientific (formerly known as Thomson ISI) and this research was remarkably supported by the earlier studies concerning (pulmonary) effects of ultrafine particles (Oberdörster et al., 2005b). Ecotoxicological tests were mostly developed for aquatic test organisms and water-soluble chemical compounds. Aquatic toxicity testing of nanoparticles is a challenge. However, whatever the evident route of exposure and the mechanisms of toxicity, bioavailability remains a key factor for the hazard valuation of synthetic NPs. Bioavailability is an active model that considers physical, chemical, and biological processes of contaminant exposure and dose, it incorporates concepts of environmental chemistry and ecotoxicology, fate, integrating contaminant concentration, and an organism's behavior in the given environment. Bioavailability of nanoparticles depends on the: (i) on nanoparticle-organism contact environment, (ii) physicochemical properties of the particles (aggregation, solubility), (iii) on the target organism (particle-ingesting or not) (Anne Kahru, Henri-Charles Dubourguier., 2010).

About Author / Additional Info:
Author is pursuing M.phil/PhD in environment science from Central university of Gujarat

Search this site & forums
Share this article with friends:

Share with Facebook Share with Linkedin Share with Twitter Share with Pinterest Email this article

More Social Bookmarks (Digg etc..)

Comments on this article: (0 comments so far)

Comment By Comment

Leave a Comment   |   Article Views: 2728

Additional Articles:

•   Metabolomic Approach to Drug Research

•   DNA Fingerprinting of Plants: An Analysis of Various Methods

•   Celiac Disease: New Advancements in Detection and Therapy

•   Virtual Screening- a Promising Approach to Drug Discovery

Latest Articles in "Nanotechnology" category:
•   Nanoparticles For Human Health

•   Application of Nanotechnology in Medicine

•   Nanosensors For Security Benefits

•   Silver Nanoparticles Elevates Wound Healing

•   Nanoparticles in Medical Science: Properties and Various Applications

•   Nanotechnology Applications in Medicine, Food Industry and Agriculture

•   COMPUTATIONAL NANOTECHNOLOGY: Its Goal, Approach, Role and Scope

•   Fullerene: Its Definition, Types and Scope

•   Nanophotonics: A Branch of Optical Engineering

•   Nano-biotechnology: A Branch of Nanotechnology

•   Nanotechnology as Applied to Biosciences

•   Respirocytes - A Prognosis From Nanomedicine

•   Biosynthesis of Silver and Gold Nanoparticles

•   DNA Nanotechnology: History and Applications

•   Nanotoxicology: Study of Toxicity of Nanomaterials

•   Nano-Circuits: Composition and its Numerous Approaches

•   Nanomedicine: Its Introduction and Applications

•   Green Nanotechnology: Its Definition, Introduction and Goals

•   Nanostructure: Its Introduction and Various Forms

Important Disclaimer: All articles on this website are for general information only and is not a professional or experts advice. We do not own any responsibility for correctness or authenticity of the information presented in this article, or any loss or injury resulting from it. We do not endorse these articles, we are neither affiliated with the authors of these articles nor responsible for their content. Please see our disclaimer section for complete terms.
Page copy protected against web site content infringement by Copyscape
Copyright © 2010 - Do not copy articles from this website.

Agriculture Bioinformatics Applications Biotech Products Biotech Research
Biology Careers College/Edu DNA Environmental Biotech
Genetics Healthcare Industry News Issues Nanotechnology
Others Stem Cells Press Release Toxicology  

  |   Disclaimer/Privacy/TOS   |   Submission Guidelines   |   Contact Us