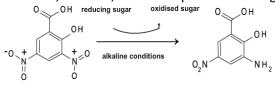
# Screening of bacteria producing amylase and its immobilization: a selective <mark>approach – By Debasish Mondal</mark>

| Article Summary                    | Bacillus sp produce amylase, so a selective approach was made to ease |
|------------------------------------|-----------------------------------------------------------------------|
| (In short - What is your           | the screening of such stains from soil. Attempt was made to enhance   |
| article about – Just 2 or 3 lines) | the product by whole cell immobilization.                             |
| Category:                          | Microbiology                                                          |

| Your full article ( between 500 to 5000 words) | Do check for grammatical errors or spelling mistakes |
|------------------------------------------------|------------------------------------------------------|
|------------------------------------------------|------------------------------------------------------|


# Screening of bacteria producing amylase and its immobilization: a selective approach -

#### **Experiment-1: Preparation of standard curve of Maltose**

Theory: Maltose is a disaccharide made up of two subunits of glucose monomers. Maltose is a reducing sugar.

Constructing a standard curve graph for maltose helps us to estimate concentration of reducing sugars present in an unknown sample and for determining the activity of amylase enzyme in forthcoming experiments. The standard curve for maltose is usually constructed using 3, 5-Dinitro salicylic acid (DNS) as the reagent.

Maltose reduces the pale yellow coloured alkaline 3, 5-Dinitro salicylic acid (DNS) to the orange- red coloured, 3 amino, 5 nitro Preparation of reagent:



This intensity change in colour is measured using a colorimeter as the absorbance at 540nm wavelength. A series of solutions containing varying concentrations of maltose are prepared in test tubes and a known quantity of DNS is added to each. These test tubes are then heated on a water bath for few minutes and their optical densities are measured using a colorimeter. A graph is then plotted with amount of maltose on X axis and the observed optical density at Y axis. The plot thus obtained is called a standard maltose curve.

#### **Preparation of reagents:**

DNS reagent: 0.25 gm. of DNS is dissolve in 5ml distilled water which already contains 0.4gm of NaOH. To this is added a solution of Sodium- potassium tartrate (7.5gm in 12.5 ml distilled water). The final volume is made to 25 ml adding about 7.5ml distilled water.

2N NaOH: prepared dissolving 1.2gm of NaOH in 30 ml of distilled water.

Maltose working solution: 100mg of maltose is dissolve in 100 ml water in a volumetric flask. To make a final conc of 1000µg

Materials required: Glassware's (tubes and pipettes)

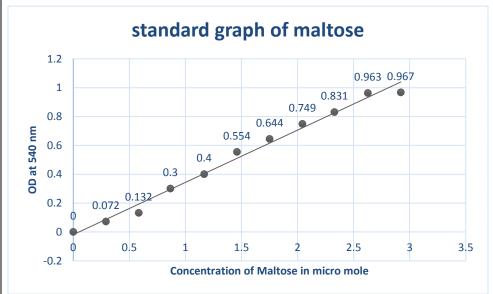
Spectrophotometer and water bath

Procedure:

| 1) Pipette out 0.1ml, 0.2ml to 1ml in separate tubes. Keeping a blank tube |  |
|----------------------------------------------------------------------------|--|
| 2) Using distilled water bring the final volume to 1ml.                    |  |

| Using distilled water bring the final volume to 1ml. |         |         |          |           |        |          |       |           |
|------------------------------------------------------|---------|---------|----------|-----------|--------|----------|-------|-----------|
| Test                                                 | Conc of | Conc of | Volume   | Volume of | Volume | Heating  | Add   | Take OD   |
| tube no                                              | maltose | maltose | of       | distilled | of DNS | in       | 2N    | at 540 nm |
|                                                      | In µgm  | in µ    | Maltose  | water     | added  | boiling  | NaOH  |           |
|                                                      |         | mole    | solution | added     |        | water    |       |           |
| Control                                              | Оµg     | 0       | 0ml      | 1.0 ml    | 1ml    | bath for | 2.5ml | 0.00      |
| T1                                                   | 100 µg  | .292    | 0.1ml    | 0.9 ml    | 1ml    | 10       | 2.5ml | 0.072     |
| T2                                                   | 200 µg  | .584    | 0.2ml    | 0.8 ml    | 1ml    | minutes  | 2.5ml | 0.132     |
| Т3                                                   | 300 µg  | .867    | 0.3ml    | 0.7 ml    | 1ml    | and      | 2.5ml | 0.300     |
| T4                                                   | 400 µg  | 1.168   | 0.4ml    | 0.6 ml    | 1ml    | then     | 2.5ml | 0.400     |
| T5                                                   | 500 µg  | 1.46    | 0.5ml    | 0.5ml     | 1ml    | cool the | 2.5ml | 0.554     |
| Т6                                                   | 600 µg  | 1.752   | 0.6 ml   | 0.4ml     | 1ml    | tubes    | 2.5ml | 0.644     |
| Τ7                                                   | 700 µg  | 2.044   | 0.7 ml   | 0.3ml     | 1ml    |          | 2.5ml | 0.749     |
| Т8                                                   | 800 µg  | 2.33    | 0.8 ml   | 0.2ml     | 1ml    |          | 2.5ml | 0.831     |
| Т9                                                   | 900 µg  | 2.628   | 0.9 ml   | 0.1ml     | 1ml    |          | 2.5ml | 0.963     |
| T10                                                  | 1000µg  | 2.921   | 1.0 ml   | 0ml       | 1ml    |          | 2.5ml | 0.967     |

3) Add 1ml DNS reagent to each tube and cover the test tube with aluminum foil.


4) Heat the contents in boiling water bath for 10 minutes and then cool.

5) Add 2.5 ml of 2N NaOH to each tube and then measure the Optical density at 540 nm.

6) Record the data and plot the graph with amount of maltose in  $\mu$  mole on X axis and OD along Y axis.

#### **Observation:**

Molecular weight of maltose is 342.3gm mole Table:1



## Expt: 2 Isolation of Amylase producing microorganisms from soil Principle

Amylase is an enzyme that degrade starch, a polysaccharide into shorter polysaccharide namely dextrin, and ultimately into maltose.

Isolation of amylase producing *Bacillus* sp from soil is done using prior heat treatment of the soil sample

to select only the endospores .A basal medium supplemented with starch, which serves as the only carbon source for the microorganism.

The detection of the hydrolytic activity following the growth period is made by performing the starch test using iodine which produces a blue black color in the case of non-producer and a clear zone in case of producer.

## Requirements

Soil samples,

Sterile distilled water,

Sterile petri dish, pipettes and tubes

Starch agar (Peptone.5.0gm, Beef extract3.0gm, Starch.2.0 gm., Agar15gm, DW1lit)

Iodine solution.

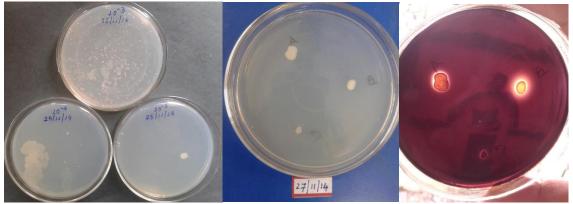
Spirit lamp, inoculating loop.

## Procedure

## Preparation of media

Starch agar media were prepared, autoclaved, poured in petri plates and were allowed to solidify.

## Serial dilution of soil sample and plating


1) 1gm sample (dried soil) each was taken in a conical flask. It was dissolved in 10 ml sterile water separately using magnetic stirrer

2) The suspension was boiled for 20 minutes to kill the vegetative cells. Only the spores will survive.

3) The soil sample was serially diluted to  $10^{-5}$  dilution, and then 0.1 ml of inoculum from  $10^{-3}$ ,  $10^{-4}$  and  $10^{-5}$ 

 $10^{-5} \, \text{dilutions}$  were spreaded on the starch agar plate.

4) The petri dishes were incubated at 37<sup>0</sup>C for 48 hrs.



Plates showing the isolates and their amylase activity in diameter. Observation

Colonies were found growing in the starch agar plates. Such colonies were subculture in fresh starch agar slants and numbered. After sub culturing the plates were flooded with iodine solution and kept for few minutes.

Clear halo were observed around amylase producing colonies.

The amylase producing colonies were marked and were freshly inoculated in the center of the fresh Starch agar plates and the diameter of the halo were measured after 48hr of incubation and flooding with iodine solution. The diameter of the halo gave a quantitative estimation of the amylase produced.

| Results<br>Results are t<br>Table:2 | tabulated as below |                  |                |   |                                                        |
|-------------------------------------|--------------------|------------------|----------------|---|--------------------------------------------------------|
| Sample                              | Treatment          | Dilutions plated | No of colonies |   | e no producing amylase<br>espective diameter of<br>Ilo |
| Soil                                | 20 minutes in      | 10 <sup>-3</sup> | TNTC           | А | 16mm                                                   |
| sample                              | Boiling water bath | 10 <sup>-4</sup> | 8              | В | 18mm                                                   |
|                                     |                    | 10 <sup>-5</sup> | 1              | с | 6mm                                                    |

#### Note: TNTC (two numerous to count)

Result: Isolate no A, and B were found to be best amylase producer from halo diameter measurement after iodine treatment.

#### Precautions

Subculture or replica plating should be made before flooding the plates with the iodine. **Experiment:3** 

#### Immobilization of cell preparation, fermentation and amylase estimation

**Aim** To study Amylase producing microorganisms isolated from previous experiment along with a reference *B. subtilis* culture were entrapped in alginate gel and production of extracellular alpha amylase and compare it with that of free cells.

#### Principle

Immobilization can be defined as the process whereby the movement of enzymes, cells, organelles etc. in space is completely or severely restricted. Entrapment is chiefly used for the immobilization of cells and commonly polyacrylamide, collagen, cellulose acetate, calcium alginate or carrageenan is used as the matrix.

Alginate a polysaccharide (containing B-D-mannopyranosyl uronate & -L- glucopyranosyl uronate in regular (1-4) linked sequences in the presence of divalent cations, especially calcium forms gel. Since gel formation can take place under mild condition, entrapment in this matrix is very suitable for immobilization of viable cells.

Amylase producing microorganisms isolated from previous experiment along with a reference *Bacillus subtilis* culture were entrapped in alginate gel and production of extracellular alpha amylase were studied and compared with that of free cells. **Requirements:** 

- LB medium containing 1%w/v Tryptone, 0.5%w/v yeast extract and 0.5% w/v NaCl.
- Fermentation medium contain 0.01%w/v NaCl, 0.02%w/v ( $NH_4$ )<sub>2</sub> SO<sub>4</sub>, 0.05%w/v MgSO<sub>4</sub>, 0.0075%w/v CaCl<sub>2</sub> and 2%w/v Tryptone.
- 4%w/v Na- alginate.( this becomes 2% when diluted with culture)
- 3.5%w/v CaCl<sub>2</sub>
- 0.9%w/v NaCl solution.
- Phosphate buffer: 0.1 M Na- Phosphate buffer of pH6.5.

68.5ml of 0.2M each of NaH<sub>2</sub>PO4 and 31.5ml of 0.2M Na<sub>2</sub>HPO4 and 100ml water was mixed to obtain 0.1M Na-Phosphate buffer pH6.5.

- Substrate: 0.5% Starch in Na- Phosphate buffer.
- DNS reagent: 0.25 gm. of DNS is dissolve in 5ml distilled water which already contains 0.4gm of NaOH. To this is added a solution of Sodium- potassium tartrate (7.5gm in 12.5 ml distilled water). The final volume is made to 25 ml adding about 7.5ml distilled water.
- Conical flasks, pipettes etc.



#### Procedure

#### **Inoculum preparation**

The isolated strains and the reference strain were cultivated at  $37^{0}$ C on a rotary shaker for 24 hrs. in LB medium containing 1%w/v Tryptone, 0.5%w/v yeast extract and 0.5% w/v NaCl.

#### Immobilization

5ml of the cell suspension (0.5-0.6OD) were mixed with 5ml of 4% sterile Na- alginate and the mixture were extruded drop wise through a pipette into 25ml 0f 3.5% CaCl<sub>2</sub> the beads thus formed were kept

for 30 minutes to allow hardening.

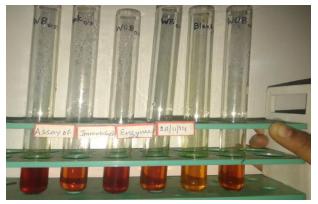
Beads were washed in 0.9% saline to remove excess of  $Ca^{2+}$ .

#### Fermentation

Fermentation media 100 ml distributed in conical flasks (250ml capacity) were sterilized. And immobilized cells prepared in the above manner were added in two of flasks (two with isolated strains separately and the other with the reference strain) .For free cell culture the other 100ml medium were inoculated with same no of cells ( 5ml of the broth of reference and the other with 5ml of isolated strain.)

Fermentation were carried out at 37<sup>0</sup>C for 48 hrs in a shaker at 180 rpm

#### **Determination of alpha Amylase activity**


Amylase activity were determined after separating the free cells or the beads by centrifugation at low speed 5000rpm.

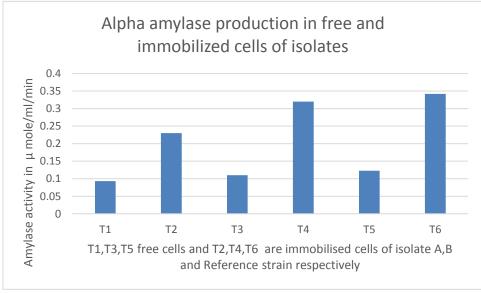
The cell free extract were treated as source of enzyme in the reaction mixture and the reagents were added according to following table shown.

| Table:3                                      | 1              | 1                                |                | 1                       | I          | •              | 1   |                                          |
|----------------------------------------------|----------------|----------------------------------|----------------|-------------------------|------------|----------------|-----|------------------------------------------|
| Sample type                                  | Tube<br>No     | Substrate<br>Starch in<br>buffer | Enzyme<br>soup | Incubation<br>For<br>15 | 2N<br>NaoH | Enzyme<br>soup | DNS | Heat all<br>tubes<br>in boiling<br>water |
| Blank                                        | T <sub>0</sub> | 1ml                              | 0 ml           | minutes                 | 2ml        | 0.5ml          | 1ml | bath                                     |
| Free cells isolate<br>no A                   | T1             | 1ml                              | 0.5ml          |                         | 2ml        | 0ml            | 1ml | for 10<br>minutes<br>and                 |
| Immobilized<br>cells isolate no<br>A         | T2             | 1ml                              | 0.5ml          |                         | 2ml        | 0ml            | 1ml | then<br>cool the<br>tubes                |
| Free cells isolate<br>no B                   | Т3             | 1ml                              | 0.5ml          |                         | 2ml        | 0ml            | 1ml | and<br>take                              |
| Immobilized cells isolate no B               | T4             | 1ml                              | 0.5ml          |                         | 2ml        | 0ml            | 1ml | OD at<br>540 nm                          |
| Reference<br>Free cells<br><i>B.subtilis</i> | T5             | 1ml                              | 0.5ml          |                         | 2ml        | 0ml            | 1ml |                                          |
| Reference<br>Immobilized                     | Т6             | 1ml                              | 0.5ml          |                         | 2ml        | Oml            | 1ml |                                          |
| cells B.subtilis                             |                |                                  |                |                         |            |                |     |                                          |

2N NaOH was added after incubation period to stop the reaction.

After addition of DNS the tubes were boiled for 10 minutes .Absorbance were measured against the blank at 540 nm.




Observations: Table :4

| Tube           | OD at 540 | Product formed       | Product formed     | Product formed  |
|----------------|-----------|----------------------|--------------------|-----------------|
| No             | nm        | in micro mole /0.5ml | in micro mole /1ml | µmole/ml/minute |
|                |           | enzyme soup          | enzyme soup        |                 |
| T <sub>0</sub> | 0.00      | 0                    | 0                  | 0               |

| T1 | 0.257 | 0.695      | 1.395 µmole/ml | 0.093 µmole/ml/minute |
|----|-------|------------|----------------|-----------------------|
| T2 | 0.637 | 1.725      | 3.45 μmole/ml  | 0.23 μmole/ml/minute  |
| Т3 | 0.304 | 0.825      | 1.65 μmole/ml  | 0.11 μmole/ml/minute  |
| T4 | 0.901 | 2.4        | 4.8 μmole/ml   | 0.32 μmole/ml/minute  |
| T5 | 0.341 | 0.9225     | 1.845µmole/ml  | 0.123 µmole/ml/minute |
| T6 | 0.941 | 2.565µmole | 5.13 μmole/ml  | 0.342 µmole/ml/minute |

#### **Observations & Results**

Observations were tabulated in Table B and histogram was drawn to compare production of amylase by various isolates and reference strain (free and immobilized cells).



Histogram comparing the isolates production of enzyme in free and immobilized state and their comparison with the reference strain.

#### **Results and Interpretation**

In reference as well as in the isolated strain the entrapped calcium alginate capsulated cells or immobilized cells were found to produce more amylase than that of the free cells. Moreover the isolated strain B was found to be the best producer among the isolates but it is still less than the compared reference strain in amylase activity. It is possible that the reference strain may be improved upon for its amylase activity by optimizing its various growth parameters and even by physical or chemical mutagenic treatment.

#### Precautions

Care is to be taken while making Na- alginate suspension by slowly heating and then it was autoclaved.
 Pipette distance and flow should be adjusted to form good size uniform beads.
 At least 30 minutes curing time in CaCl<sub>2</sub> is necessary.

#### References (if any)

1. Konosoula Z., Liakopulou Kyriakides M. Thermostable α-amylase production by Bacillus subtilis

entrapped in calcium alginate gel capsules. Enzyme and Microbial Technology **39** (2006)690-696.

# About Author: -

| Your Full Nan                 | ne (published) | Debasish Mondal                                                                                                                                                 |
|-------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| City:                         | (published)    | Kolkata-700065                                                                                                                                                  |
| State / Zip:                  | (published)    | West Bengal                                                                                                                                                     |
| Country:                      | (published)    | India                                                                                                                                                           |
| A few lines al<br>(published) | oout you:      | I am currently working as an Assistant Professor in Biology<br>and as Head in the Department of Microbiology, St. Paul's,<br>Cathedral Mission College, Kolkata |

# Terms - Do not remove or change this section (It should be emailed back to us as is)

- This form is for genuine submissions related to biotechnology topics only.
- You should be the legal owner and author of this article and all its contents.
- If we find that your article is already present online or even containing sections of copied content then we treat as duplicate content such submissions are quietly rejected.

• If your article is not published within 3-4 days of emailing, then we have not accepted your submission. Our decision is final therefore do not email us enquiring why your article was not published. We will not reply. We reserve all rights on this website.

 Your article will be published under our "Online Authors" account, but you will be clearly indicated as the original author inside the article. Your name and email address will be published. If we feel it is not feasible for us to publish your article in HTML format then we may publish it in PDF format.

• Do not violate copyright of others, you will be solely responsible if anyone raises a dispute regarding it.

Similar to paper based magazines, we do not allow editing of articles once they are published. Therefore please
revise and re-revise your article before sending it to us.

• Too short and too long articles are not accepted. Your article must be between 500 and 5000 words.

• We do not charge or pay for any submissions. We do not publish marketing only articles or inappropriate submissions.

Full submission guidelines are located here: <u>http://www.biotecharticles.com/submitguide.php</u>

Full Website terms of service are located here: <u>http://www.biotecharticles.com/privacy.php</u>

As I send my article to be published on BiotechArticles.com, I fully agree to all these terms and conditions.