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1 INTRODUCTION 

 A partial triallel cross (PTC) is defined as a sample of all the possible three-way crosses 

to gather information on the combining abilities of the parents   (Hinkelmann 1963, 1965). 

Hinkelmann (1967) further constructed and analysed PTC’s using circulant PBIB designs of 

Kempthorne (1953). Assuming the N parents having been denoted by  i = 1,2,...,N, the triplet 

(i,j)k stands for a typical three-way cross where i and j are half parents and k is full-parent. Here 

(i,j)k and (j,i)k are taken equivalent in that the two half-parents are symmetrically placed but k 

being full parent the triplet (i,k)j is different from earlier two triplets from genetic 

interpretation. The model for the genetic part of such a cross is  

  Y(i,j)k =  + hi + hj + gk+ (i,j)k       (1) 

(i,j,k = 1,...,N,ijk) where  gk is called the general effect of the Ist kind of line k and hi the 

general effect of the second kind of line i. The (i,j)k are assumed to be independent random 

variables with mean zero and variance  2. For a comprehensive model, estimation and 
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genetical interpretation of variances among crosses etcetera, reference is made to Cockerham 

(1961), Rawlings and Cockerham (1962) and Hinkelmann (1963,1965,1967); and that for the 

notions of PBIB designs, association schemes and construction of PTC’s to Bose and 

Mesner(1959),  Hinkelmann(1965,1967) and Zoellner and Kempthorne(1954).  

 In what follows we first review the work of Hinkelmann for the concepts and 

comprehension of the subject and then modify the notations in accordance with 

Arya(1983,1989) to make our treatment emendable to algebraical manipulations for 

establishing the equivalence between two PTC’s.  

 Hinkelmann constructed the circulant partial triallel crosses using circulant (or cyclic) 

association scheme as basic PBIB applied to two sets, namely 

      H
   = (1H,2H,...,NH )  and  F

 = (1F,2F,...,NF)        (2) 

of lines in their function as half parents and full-parents respectively. The resulting   associate 

classes were represented by 11:t-th and 22:t-th associates for t=0,1,...,M, where M = N/2 for N 

even or (N-1)/2 for N odd respectively. For 11:t-th, each iH is considered the 0-th associate of 

itself and of no other element. Also if  jH is the 11:s-th associate of iH for some s(0 sM) then jF 

is taken to be the 12:s-th associate of iH. In particular, every element iF is the 12:0-th associate 

of iH and of no other element. A similar interpretation holds for 22:t-th associates. 

 The construction of PTC corresponds to the construction of an incomplete block  design 

with 3-plots having two different treatments from H
 and one from F

 , this one being 

different from the first two. For balancing property each element from F
 should occur r 

times and each element from H
 should occur 2r times. It may however, be clarified that 

from the point of view of design, a PTC and a PBIB with 3-plot blocks are equivalent but they 

refer to different concepts from analysis and interpretation point of view. In PBIB we have 

three observations on three treatments per block and inter as well as intra-block analysis is 

possible, while in PTC there is only one observation per block, pertaining to a three-way-cross 

plant and only inter-block analysis is possible. 

 For the parameters of circulant PBIB used above, we note that the number of 11:t-th 

associates, of 12:t-th associates and 22:t-th associates is equal to the number of t-th associates, 

namely, nt =2, for t=1,2,...,M  except for t=M if  N is  even,  where nM =1  and  n0 =1.  Also if two 

treatments are 11:t-th associates, then the number of elements common to 12:s1 -th associates 

of the lst and the 12:s2 -th associates of the second element is equal to t
ssp

21 , , where t
ssp

21 , is a 

parameter of the second kind for the basic PBIB  (t,s1,s2=0,1,...,M).  For completeness the values 

of t
ssp

21 , are given below 
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      0

ss 'p  =1 for s=s=0 

           =1 for s=s=M and N even  

           =2 for s=s ((s,s) (0,0) or (M,M) for N even) 

           =0 otherwise  

       t

ss 'p  =1 for t=s-s, t=s-s 

                  t=s+s, t=N-s-s                            (3) 

            =0 otherwise  

             (t=l,2,...,M; except for N even, t=M) 

for N even : 

      M

ss 'p   =1 for (s,s)=(M,0) or (0,M) 

         =2 for M=s+s ((s,s)   (M,0),(0,M)) 

           =0 otherwise.                                (4) 

 Further, let ttt :22:12:11 ,,   denote the number of times two 11:t-th associates, two 12:t-

th associates and two 22:t-th associates occur together in a block, respectively. Then 11:0 =2r, is 

the number of occurrence of a treatment as half-parent, 12:0=0, as iH and iF cannot occur 

together in a block, and 22:0 =r, is the number a line occurs in the design as a full-parent. Also  

22:t =0  (t=1,2,...,M)  since each block contains only one element from F
. 

 Hinkelmann (1963,1965 and 1967) derived a set of conditions to be satisfied by the 

parameters of the second kind of PBIB and made use of these to construct the PTC’s. He 

distinguished between a PTC, an elementary PTC and a simple PTC. We shall, however, be using 

a single term i.e. PTC for all such PTC’s for reason to be explained shortly. Briefly stated, 

according to him, a necessary and sufficient condition for a PTC of size N, PTC(N),  to exist was 

that t0 and s0 ( not 0 and =l,2,...,M) would satisfy, 

            (a)    t 0 = 2s0  

  or 

  (b)    t0 = N-2s0                                  (5) 
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and that such a  PTC(N) was represented uniquely by the fundamental set 

            S(1+s0 ,1+N-s0 ) = {(1+s0 ,1+N-s0)1}               (6) 

from which the whole PTC(N) was generated in a circulant manner having the following crosses 

            (1+s0 ,1+N-s0 )1 

            (2+s0 ,2+N-s0 )2 

               . 

                . 

            (N+s0 ,2N-s0 )N                            (7) 

wherein all numbers greater than N are reduced mod N and zero is replaced by N. It was further 

shown that a necessary and sufficient condition for a PTC(2N) to exist, the numbers t0 , s1 and s2  

(0, s1 s2 ,  t0,s1,s2 =  1,2,...,M)  satisfy one of the four conditions 

            (a)   t0 =s1-s2 

            (b)   t0 =s2-s1 

            (c)   t0 =s1 +s2 

            (d)   t0 =N-s1-s2                                 (8) 

For any triplet  (t0 :s1,s2 ) satisfying  (8a) or (8b) the corresponding  PTC(2N) was   generated 

uniquely by the fundamental sets  

            S(1+s1,1+s2 ) and S(1+N-s1 ,1+N-s2)               (9) 

If (t : s1,s2 ) satisfied (8c) or (8d) the PTC(2N) was generated by  

            S(1+s1,1+N-s2 ) and S(1+s2, 1+N-s1)              (10) 

He also obtained among other things, the necessary and sufficient conditions for a PTC(2N), 

consisting of two PTC(N) (actually this also applies to PTC,s constructed under (9) and (10)) to 

be connected in his Theorem 1 and dealt with other aspects of  balancing and analysing the 

crosses so developed. 

2 METHODOLOGY 

 Let us modify the notations of Hinkelmann to that of Arya(1983,1989). We denote 

the N lines by i=0,1,...,N-1.  Now marking 0-th line as full parent, the remaining N-1 lines could 
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form (N-1)(N-2)/2 single crosses in an arbitrary manner which in combination with 0-th line as 

full-parent would give rise to a set of (N-1)(N-2)/2 triallel crosses. If, however, we confine to 

circulant PTC’s only, the possible single crosses which could be combined with the 0-th full 

parent are M(=(N-1)/2) if N is odd or M-1(M=N/2) if N is even. This is because the coefficient 

matrix A, say, in the normal equations of (1) will be a real symmetric circulant. Denoting the 

elements in first  row  of  A by ai (i=0,1,...,N-1), one would observe that  

            ai =aN-i , i =0,1,...,N-1,                        (11) 

showing that Line i would combine with Line N-i to form a single cross and to  none else. 

Further each ai(i 0) is either 0 or 1. In fact the relationship of  (11) is a consequence of 

circulant association scheme with M associate classes, wherein the t-th associates  (t=0,1,...,M)  

of  any treatment  (=0,1,...,N-1) is given by  

   tC , = (+t,+N-t)                                 (12) 

In particular  

           tC ,0   = (t,N-t)                        .            (13) 

and, in view of  (13), both elements in (11) are always equal(0 or 1). They are not only equal in 

magnitude but are also equal in their cosine functions, which are employed in analysing these 

PTC’s. For example, cos(2)(i)/N = cos(2)(N-i)/N for all i. In general for two numbers k and k, 

k=k in their cosine functions if k=rN k, where r is an integer. To avoid the duplicacies in 

elements we consider only the M distinct associate classes along with their multiplicities 

defined earlier. We define a set of integers  

            E N : 0,1,...,M                                   (14) 

wherein all numbers greater than M are reduced not only modulo N but also for the 

equivalence  k=N-k  (k=0,1,...,M). We say k=k in EN if k=rNk. EN so defined presents a closed 

set under multiplication. Two Multiplication Tables(MT) are listed in Table-1 for illustration and 

for use in our later discussion. 

Table-1 : Multiplications in elements of EN  for N=12 and 13 

---------------------------------------------------------------------------- 

 (a) N=12    (b) N=13 

 column    column 

Row 1   2   3   4   5   6   1   2   3   4   5   6 
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_____________________________________________________ 

1 1   2   3   4   5   6   1   2   3   4   5   6 

2       2   4   6   4   2   0       2   4   6   5   3   1 

3 3   6   3   0   3   6   3   6   4   1   2   5 

4       4   4   0   4   4   0     4   5   1   3   6   2 

5 5   2   3   4   1   6   5   3   2   6   1   4 

6       6   0   6   0   6   0     6   1   5   2   4   3 

_____________________________________________________ 

      In present notations the conditions for the existence of a PTC(N) of Hinkelmann 

contained in (5) can be expressed by a single equation 

            t0 = 2s0  E N                                     (15) 

for t0 =1,2,...,M and s0 =1,2,...,M for N odd or s0 =1,2,...,M-1 for N even. We denote a PTC with 

parameters of  (15) by C(t0 :s0) and the underlying design by D(s0). D(s0), therefore, 

characterises the fundamental set {(s0 ,N-s0 )0}. Note that on adding unity to each number of 

this FS we get the set {(1+s0 ,1+N-s0 )1} of Hinkelmann. The number of solutions of (15) are M or 

M-1 if N is odd or even respectively, and this is the number of possible PTC(N) which could  be  

constructed as pointed out in foregoing  paragraph.  Thus out of (N-1)(N-2)/2 PTC(N) under 

complete triallel cross(CTC) only M or M-1 are available with circulant scheme and rest of  the 

crosses get zero probability.  We can say that a natural degree of fractionation of complete 

circulant triallel cross (N) vis-a-vis a CTC is 1/N-1 if N is even or 1/N-2 for N odd. 

      Coming to PTC(2N), the first and second pairs of equations (8) change respectively to  

              (a)  t0  = |s1 -s2| 

and        (b)  t0  = s1 + s2 EN                             (16) 

for t0=1,2,...,M and s1 s2 =1,2,...,M. Let these PTC’s be characterized by C(t0 :s1 ,s2)  and C*(t0 :s1 

,s2) and corresponding designs by D(s1 ,s2 ) and D*(s1 ,s2 ) respectively. D(s1 ,s2 ), then refers to 

the two FS’s {(s1,s2)0,(N-s1,N-s2)0}and the D*(s1 ,s2 ) to {(s1,N-s2)0,(s2 ,N-s1 )0}. The total PTC(2N), 

which equals the number of solutions of (16), is thus M(M-1) for N odd or (M-1)2 for N even. 

The natural fractionations of these PTC’s vis-a-vis CTC being (N-3)/(N-2) or (N-2)/(N-1) if N  is 

odd or even respectively. 
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      The number of PTC(N) along with PTC(2N) constitutes the CTC implying that  there is a 

one-to-one correspondence between the FS’s and the PTC’s. Therefore a circulant PTC, an 

elementary PTC or a simple PTC of Hinkelmann are all synonymous so far circulant samples are 

concerned.  

 PTC(2N) could alternatively be constructed by combining the PTC(N) in two’s, say it 

PTC(N+N)= C(t1 :s1, t2:s2), as suggested by Hinkelmann. Thus we get M(M-1)/2 or (M-1)(M-2)/2 

combinations according as N is odd or even respectively. This paves the way for constructing 

PTC(rN) for r>2. A look at (16) suggests that at the most two values of s can be associated with a 

single value of t. Therefore conditions (2) and (3) of Hinkelmann provide no means to construct 

PTC’s for r>2 with a single parameter t and one has to generate them by combining PTC(N) 

and/or PTC(2N). With so many PTC’s at hand, one would like to select the optimum PTC in 

terms of some efficiency criterion. We now proceed to deal with this aspect. 

3. EQUIVALENCE CRITERION  

      In order to establish the equivalence between two partially balanced designs one fixes 

some criterion to be qualified by these designs. For example, David(1963,1965), 

John(1966,1969), and John, Wolock and David(1972) in connection with cyclic paired 

comparison designs, regard two designs equivalent(or equally efficient) if one can be obtained 

from the other by a suitable  relabelling or permutation of the objects. Here it is not clear which 

property of the design being studied through relabelling. Moreover with a single labelling 

several designs qualify to be equivalent. The question arises how to decide the equivalence 

without disturbing the original labelling. Arya (1989) discussed the equivalence of partial diallel 

crosses (PDC) using their variance property. In partially balanced incomplete block designs (as is 

the case with PTC’s) the design matrix does play an important role towards the (average) 

variance used for comparing the performance of treatment contrasts. Hence we associate this 

quantity to the corresponding design as a criterion of efficiency. Hinkelmann also regards two 

PTC’s as equivalent if they possess the same -parameters. His criterion also leads to the 

variance property. We shall use the variance criterion (Arya 1983,1989) to make it more 

consistent since two PTC’s having the same -parameters may possess different eigen roots and 

hence different average variances. 

      For completeness we define a PDC (Arya 1983) which resembles a PTC(2N) in design and 

analysis.  

Definition 3.1 : A PDC design in which the 0-th line has single crosses with four lines, s1 ,N-s1 ,s2 

and N-s2 is denoted by D(s1 ,s2 ) where s1  s2  0; s1 ,s2 = 1,2,...,M in EN .  

 Thus D(s1,s2) characterizes a fundamental set of 4N single cross, i.e. {s10, (N-s1)0, s2 
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0, (N-s2)0 } vis-a-vis a set of 2N three-way-crosses for a similar PTC design, C(t0 :s1 ,s2 ). Hence 

from design point of view D(s1 ,s2) and C(t0 :s1 ,s2) are similar but  they differ in analysis and 

interpretations. The analysis of PTC becomes more complicated for the inclusion of the 

parameters t0 and t

ssp
21 , to be discussed shortly. 

      The eigen values of the coefficient matrix A, in the least squares matrix of the PDC’s are 

(Arya 1983,1989) 

  



M

t

ttk tkan
0

)cos(          (17) 

(k = 0,1,...,M) where nt is the number of  t-th  associates and at is the t-th element in the first 

row of A, such that a0= 4, at= 1 when t=s1 or s2 and 0 otherwise, and =2/N.  The eigen values 

of the matrix B (which decides the estimability of h and g-effects for model (1)) in the reduced 

normal equations for the h-effects under PTC’s are (Hinkelmann 1967) 

                            



M

t

ttk tkn
0

* )cos(         (18) 

where earlier symbols have the same meaning as in (17) and 

            t
ss

p
M

ss
sstt

210
2

,
1

2
:12

1
:12

)2/1(
:11

*



         (19) 

with Pt =( t

ssp
21 , )  (t=0,1,...,M) as (M+1)(M+1) association matrices of the parameters of second 

kind for the circulant PBIB’s. It is pointed out that where as -parameters under PDC are all 

non-negative integers (0 or 1), those given by (19) may be negative numbers. Not only that, the 

-values may force the eigen roots as well as the average variance to be negative. A PTC with 

negative eigen value(s), with a deceptive lower average variance, will not be considered 

towards optimum designs. For PTC(2N), C(t0 ,s1 ,s2 ) under discussion, (19) reduces to  

  }2){2/1(
222111:11

* t
ss

t
ss

t
sstt ppp        (20) 

 For a connected PTC(2N), when B has rank  N-1, the average variance(Av.Var.) over 

possible h-differences works to be  

  )1/()/(2..
1

2  


NnVarAv k

M

k

k        (21) 

The av.var. or any of its derived functions can be used as an index of efficiency for the PTC. For 
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example the relative efficiency of plan A compared with plan B can be taken as    

         E
Av.Var.  for plan B

Av.Var.  for  plan AAB
        (22) 

Since av.var. depends on -values through -parameters, the former has a bearance on 

equivalence of designs which is the subject of next discussion. 

      The direct way of establishing equivalence between the PTC’s, C(t0 :s1 ,s2 ) and    

C t s s' ' ' '( : , )   or between C(t1:s1,t2:s2) and C t s t s' ' ' ' '( : , : )     is to check for their -values or 

average variance of  the PTC concerned. The -parameters are, for 

C(t0 :s1,s2 ) : 0:11  = 4, 2
0:11 t ,  

1:12 s = 1 = 
2:12 s and the rest zeros        (23a) 

C(t1:s1,t2:s2) : 0:11  =4, 
1:11 t =1= 

2:11 t , 
1:12 s =1 = 

2:12 s and all the rest zeros   (23b) 

Similar expressions hold for C ' ’s. If for certain combinations of (t,s) the eigen values of (18) 

through  *‘s happen to be equal for C and C, their equivalence would  be established. Since 

(16) can be satisfied by several sets of values, we expect equivalence to exist. 

 

4. SYMMETRY RELATIONS 

 The equalities in -values can be introduced in different ways. It may be either due to 

symmetry in index values, namely, (t1 :s1) could be interchanged with  (t2:s2) in C(t1:s1,t2:s2), or it 

may occur due to equalities in EN where k=k if k = rNk as explained earlier or it may happen 

due to equalities of p-values where t

ssp
21 ,  may equal  

'

'
2

'
1 ,

t

ss
p   even  when  t  t, s s  '  and 

s s  ' .  Accounting for such equalities seven types of equivalence are listed in Table-2 for 

both types of PTC’s. The symbol (t: s)   (t: s) refers to two-way equivalence between the sets 

( : )t s  and ( : )' 't s   in EN . 

                           

Table-2 : Different types of equivalence among the PTC’s 

________________________________________________________________ 

(a) PTC designate C(t0,s1,s2) 

 Given set   Equivalent set   Type 
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________________________________________________________________ 

 (t0,s1,s2)    ),,t( '
2

'
10 ss    T1 

     ),,t( '
1

'
20 ss    T2 

     ),,t( 120 ss    T3 

     ),,t( 21
'
0 ss    T4 

     ),,t( '
2

'
1

'
0 ss    T5 

     ),,t( 12
'
0 ss    T6 

     ),,t( '
1

'
2

'
0 ss    T7 

__________________________________________________________________________________________________ 

 

(b) PTC designate C(t1:s1,t2:s2) 

 Given set   Equivalence set  Type 

______________________________________________________________ 

 (t1 : s1 )(t2 : s2 )    ):t)(:t( '
2

'
2

'
1

'
1 ss   T1 

     ):t)(:t( '
2

'
211 ss   T2 

     ):t)(:t( 22
'
1

'
1 ss   T3 

     ):t)(:t( 1122 ss   T4 

     ):t)(:t( '
1

'
122 ss   T5 

     ):t)(:t( 11
'
2

'
2 ss   T6 

     ):t)(:t( '
1

'
1

'
2

'
2 ss   T7 

______________________________________________________________ 
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5. EQUIVALENCE THEOREMS AND THEIR APPLICATIONS 

      To establish the sort of relations given in Table-2 we quote some theorems from 

Arya(1989) whose proofs are simple but avoided here, and may be referred to if so desired.  

Theorem 5.1 : Two sets S(i,j,...,q) and S(i,j,...,q)  of equal order are equivalent iff  

            {i,j,...,q}   {i,j,...,q} 

and simultaneously  

            {i,j,...,q}   {i,j,...,q} 

where operators    and  both prime to N are inverse to each other, i.e. they satisfy   =1 in 

EN .  

Symbolically we may denote such relations by          

   {i,j,...,q}    <



>  {i,j,....q}  

or by S   S, implying that randomization  on S yields Sand randomization  on Syields S. 

We shall call such sets as mutually generated (MG), equivalent or randomized sets. Let us term 

set S from which other sets are generated as Leading Set(LS). A LS thus may represent a family 

of MG sets. A rule of thumb to decide whether S(i,j,...,q) and S(i,j,...q) are MG sets is to check 

S under columns C(i,j,...,q) and vice-versa of  multiplication tables such those given in Table-1.  

Theorem 5.1 ensures that two PTC’s characterized by S and S sample exactly the  same crosses 

though put in a different order. This is expressed as  

Theorem 5.2 : Two PTC’s characterized by MG sets are equivalent otherwise they are distinct, 

namely, they have different efficiencies. 

 It may be pointed out that Theorem 5.1 strictly applies to leading sets of PDC no two 

elements of which were equal. A PTC, however, is characterized by two or more sub-sets, which 

may be recognised as extended sets to explain the equivalences in Table-2. 

Theorem 5.3 : For N prime, a given leading set S(i,j,...,q) has exactly M equivalent sets given by S 

= S{k  (i,j,...,q)}for k = 1,2,...,M. 

Example 5.1 : Consider N=7, M=3 and EN = 0,1,2,3. The two LS’s ie., (1:1,2) and (1:1,3) contain 3 

MG sets each accounting for the 6 PTC(2N). One may check for the randomizations viz., 
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            (1:1,2) <
2

3
> (2:2,3) <

2

3
> (3:1,3) <

2

3
> (1:1,2) 

            (1:2,3) <
2

3
> (2:1,3) <

2

3
> (3:1,2) <

2

3
> (1:2,3) 

      For N mixed the leading set will not yield M equivalent sets. Now more symmetries will 

be introduced and more distinct classes will be formed reducing the frequencies of equivalent 

PTC’s.  

Example 5.2 : Let us consider a PTC(2N) as combination of two PTC(N) for N=9. Each of the two 

leading sets generates only three MG sets and account for all the six PTC’s. The randomization 

being 

      {1:4,2:1} <
4

2
> {1:4,4:2} <

4

2
> {2:1,4:2} <

4

2
> {1:4,2:1} 

       {1:4,3:3} <
2

4
> {2:1,3:3} <

2

4
> {3:3,4:2} <

2

4
> {1:4,3:3} 

      Looking at the randomization carried in example 5.1 and 5.2, it will be observed that a 

single  could operate on both the sub-sets and were of the types T5 or T7 and  T1 or T7 in 

Table-2(a) and Table-2(b) respectively. 

      When N is even and multi factor, due to non-existence of pairs (,) of Theorem 5.1 the 

necessary condition of theorem will no longer hold, though sufficient one still does. More 

equalities in  t

ssp
21 ,  are introduced and distinct classes increase at the cost of equivalent ones. 

The equivalence type in Table-2 will be confined to sub-sets only, recall that only a prime  

operates on the total set. 

Example 5.3 : Consider a PTC(t0 :s1 ,s2) for N=8. Since 3 is only prime to 8, a leading set can 

generate at the most 4 MG sets. Referring to equivalencies in Table-2(a),  the 9 PTC,s  fall into 5 

distinct groups, namely, 

  (i):(1:1,2)  1T
 (1:2,3)  5T

  (3:1,2)  1T
 (3:2,3),  

  (ii):(2:1,3), (iii):(1:3,4)   (3:1,4), (iv):(2:2,4)  and (v):(4:1,3).  

First and second group form singular samples having 1and 2 roots (other than 0 ) zero,  the last 

three groups yield 1 root negative. 

      It is found that -parameters for C(2:1,3) and C(4:1,3) are the same but their -values 
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are different. Therefore, equalities of -parameters does not necessarily imply equalities of 

eigen values. Such more exceptions may be cited. 

 

6. CONSTRUCTION OF PTC’s :  

      A systematic way of constructing the entire set of PTC’s is discussed below: 

(i) PTC(N)     

      A primitive solution of (15), (t0 :s0 ) = (2:1), is used as generating set(GS) from which the 

entire FS’s of PTC(N), i.e., 

   Sk  = {k  (2:1)}   {2k:k}                      (24) 

for k through 1 to M (N odd) or M-1 (N even) is obtained. If N is prime all these sets are MG sets 

and we obtain so many structurally equivalent PTC(N). If N is a mixed number, the number of 

distinct PTC(N) increases due to symmetries and (24) does not yield the complete set. One has 

to search the remaining solutions directly (see example 5.2). 

 

(ii) PTC(2N) 

      A primitive solution (1:1,2) of  (16) is selected as generating set. A set of M-1 PTC’s is 

raised as 

            Sk  ={1:k,1+k} ,k=1,2,...,M-1                    (25) 

If N is prime, the above M-1 sets are all distinct and each one gives rise to M equivalent FS’s 

through randomisation in EN , namely, 

            Sk,l   = {l  (1:k,1+k)}  (l=1,2,...,M)              (26) 

Hence (26) yields all the possible M(M-1) PTC’s. If N is not prime, the M-1 sets in (25) would not 

generate the entire M(M-1) sets due to factorability of N and consequently one has to search 

some more distinct sets as solutions of (26) as pointed out earlier. For illustration, with N=9, 

(25) yields only 3 tenable sets from each S1, S2 and S3 accounting for 9 PTC’s only. One more 

solution of (16), ie., S4 =(3:1,3) having 3 equivalent sets makes up the full set of 12 PTC’s. If N is 

a multifactor 12, say, with 5 as prime and with only 25 PTC’s there would be 16  distinct 

solutions of (16). Out of these except C(4:2,6) all the rest are either singular or have negative 

roots, an undesirable property sending a wrong signal for its low value.  
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(iii). PTC(N+N) 

      In order to construct a PTC(2N) as combination of two PTC(N), the straight way is to 

combine all PTC’s in two’s and thus get  MC2 or (M-1)C2  PTC(2N) if N is odd  or even respectively. 

One has to set up the equivalence thereafter. Alternatively one can use the primitive set (2:1) 

to produce q(< M/2) distinct sets  

            S  = { (2:1),(2:) }, =2,3,...,q              (27) 

where each  possesses its inverse element EN . With N prime, there are M/2 or (M-1)/2 

pairs of (,) as M is even or odd respectively. Further when M is even one pair (,) has = 

and it generates only M/2 MG sets while for  , each of  the (M-1)/2  pairs (,) generates 

exactly  M equivalent designs S,k (k=1,2,...,M).  There exist thus M(M-1)/2 total PTC’s.  

Example 6.1 : N=11. We have (2,5) and (3,4) as (,) pairs. Using (27) one gets the distinct PTC’s 

as  

           S2 = { (2:1),(4:2) } 

            S3 = { (2:1),(5:3) }                       (28) 

 From each of these two sets one gets five MG fundamental sets, S2,k and S3,k      

(k=1,2,...,5) thus accounting for all the 10 PTC’s. 

Example 6.2 : Let N=13. Here (2,6), (3,4) and (5,5) are the (,)-pairs. They yield S2 ={(2:1),(4:2)}, 

S3 ={(2:1),(6:3)} and S5 ={(2:1),(3:5)} as distinct sets. Notice that S5 would only account for 3 MG 

sets, ie., 

                S5,1   = {(2:1),(3:5)} = S5,5 

                S5,2   = {(4:2),(6:3)} = S5,3 

                S5,4   = {(5:4),(1:6)} = S5,6 

The above three leading sets thus generate in all 15 PTC’s. 

 

(iv). PTC’s of higher orders : 

      PTC’s of order 3N or 4N may be obtained as combinations from those of lower orders. 

For example, a PTC(3N) can be obtained either by combining 3 PTC(N) as C{(t1 :s1),(t2 :s2),(t3 
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:s3)}or one PTC(2N) with one PTC(N) as C{(t0 :s1 ,s2),(t3 :s3)}. Similarly a PTC(4N) can consist 

either of four PTC(N) or a combination of two  PTC(2N).or else a combination of two PTC(N) and 

one PTC(2N). One, therefore, has a scope to select the best out of a range of comparable PTC’s 

based on the criterion fixed. The theorems and discussion on equivalence holds good for all 

these PTC’s except that more symmetries will be introduced through subsets of Table-2 and 

perhaps beyond that. For example Table-2 fails to explain the equivalence of  the two PTC4N 

for N=11, i.e. C{(1:2,3),(3:1,4)} and C{(1:3,4),(4:1,3)}with an equal average variance of 0.51462 . 

 

7. CONNECTED PTC’s  

      Hinkelmann defined a PTC to be connected if  all differences hi -hi’ (and consequently all 

gi -gi’ , (i,i=0,1,...,N-1) were estimable. According to his Theorem-1, the necessary and sufficient 

conditions for a PTC(N+N)=C(t1 :s1 ,t2 :s2) to be connected is that (s1 +s2 ,N)=1 and (|s1 -s2 

|,N)=1, where  d=(a,b) is the greatest common deviser of a and b. 

      This theorem truly applies to a PDC, the D(s1 ,s2), discussed in S 5 having eigen values of 

(17) and not to a PTC with eigen values of (18) which utilizes t

ssp
21 , ‘s through *-parameters. The 

observation of Arya(1983)  that “odd line samples of PDC were all singular for even N, was a 

verbal statement of this theorem (also see Curnow 1963). To substantiate our statement some 

PTC’s in violation of the Theorem of Hinkelmann are listed in Table-3. 

Table -3 PTC’s showing counter examples to theorem on connectedness of Hinkelmann  

_____________________________________________________________________ 

N PTC’s which should have been PTC’s which should not be singular 

 singular but aren’t   but are 

_____________________________________________________________________ 

8 (4:1,3), (2:2,4)    (1:1,2)  (1:2,3)  (3:1,2)  (3:2,3), 

      (2:1,3) 

 

12 (2:4,6), (4:2,6)    (1:2,3)  (5:2,4), 

 (6:2,4)
P

  (6:1,5)*   (1:3,4)  (5:3,4), 
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 (2:1)(6:3)  (2:5)(6:3)  (2:1)(4:4)  (2:5)(4:4), 

      (4:2)(6:3) 
P

  (4:4)(6:3),  

      (2:5)(4:2) 

 (2:6,8)  (6:2,8)   (1:1,2), (1:2,3), (1:3,4), 

      (1:4,5), (1:5,6), (!:6,7) 

 

16 (8:1,7)  (8:3,5),    and twelve of their generated sets 

 (4:4,8)  (8:2,6), 

 (4:2)(8:4)  (4:6)(8:4) 

----------------------------------------------------------------------------------------------------- 

* The equivalence 
P

   refers to equalities through p-values, rather than the MG 

equivalence. 

 

8. BALANCED PTC’s : 

           According to Hinkelmann a PTC is balanced if every combination (iH ,jH) and every 

combination (iH ,kH ) occurs exactly q times for 1 qN-2 which is  possible if N were odd. 

      For q=1, balanced set of PTC(N),C(t0 ,s0) consists of the M sets SK contained in  (24) 

wherein each t0 and each s0 (1 t0 ,s0  M) occurs exactly once. 

      For q=2 a set of PTC(t0 ;s1 ,s2 ) is balanced if every t0(1 t0  M) occurs once and every 

s(1 s M) occurs exactly twice. For N prime,  M-1 such balanced sets  are always available as Sk 

(for k=1,2,...,M-1) of (25), each containing M PTC’s contained in (26). A more balanced and 

appealing PTC is worth considering in which all pairs (s1 ,s2) attain a balance. One such PTC, say 

it half-fraction CTC can be raised using (M-1)/2 (integer) balanced sets in which every t0 occurs 

(M-1)/2 times and every pair (s1 ,s2) occurs once in the whole design. 

Example 8.1 : Suppose N=11. Using (25) and  (26) we get 4 balanced sets of 5 equivalent PTC’s 

as :  

            S1  :(1:1,2),(2:2,4),(3:3,5),(4:4,3),(5:5,1) 
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            S2  :(l:2,3),(2:4,5),(3:5,2),(4:3,1),(5:1,4) 

            S3  :(1:3,4),(2:5,3),(3:2,1),(4:1,5),(5:4,2) 

            S4  :(1:4,5),(2:3,1),(3:1,4),(4:5,2),(5:2,3) 

Note that (S1 ,S2) and (S3 ,S4) form two half-fraction CTC’s. In Example 4 of Hinkelmann, the four 

balanced sets were arbitrarily written and hence such a balance was not obvious. 

9. OPTIMUM DESIGNS FOR PTC’s  

      In order to evaluate the parents in hybrid combinations (PTC’s here) one should 

naturally go for the optimum plan. Such plans have been listed in Appendix A for N=6 to 20 for 

PTC’s of size 2N, 3N and 4N along with their index of efficiency, namely, the average 

variance(Av. Var). Hopefully these will meet the need of a breeder desiring to evaluate his 

material for its three-way cross potential.  The explanation for the code of designs is 

recapitulated here for ease of the reader. 

      A PTCN refers to a PTC of size N, namely, there are N three-way crosses and each parent 

occurs once as a full-parent and twice as a half-parent. It is denoted by C(t1 :s1) with a 

fundamental set of crosses(in Hinkelmann’s simple notation) as {(s1+1,N-s1+1)1}. 

      A PTC2N refers to a PTC of size 2N and is characterized either by C(t0 :s1 ,s2) if t0 = | s1 - 

s2 | or t0 = s1 +s2  EN with the corresponding FS’s as  {(s1+1,s2+1)1, (N-s1 +1,N-s2 +1)1} and 

{(s1+1,N-s2+1)1,s2+1,N-s1+1)1} respectively. Alternatively a combination of two PTC’s can result 

in a PTC2N, C(t1:s1,t2:s2) having the F.S. as {(s1+1,N-s1+1)1, (s2+1,N-s2+1)}. 

      Similarly a PTC3N generates a three-way crosses and may consist either as combination 

of 3 PTCN, namely, C(t1:s1,t2:s2,t3:s3) or as combination of a PTC2N  and a PTCN, namely, 

C(t0:s1,s2; t3,s3 ) or C* (t0:s1,s2; t3,s3) as the case may be. Their F.S.’s can be written on the above 

lines. 

      Lastly a PTC4N can be obtained by combining either four PTCN or two PTC2N or else one 

PTC2n and two PTCN and raising the crosses with the help of F.S. The analysis and generic 

interpretation of all PTC’s follow as given in Hinkelmann (1967). 

 

APPENDIX A 

 

Optimum plans for PTCs of different orders along with their average variances in 2 units  for   
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N = 6 to 20 

N PTC2N Avg. Var. PTC3N Avg. Var. PTC4N Avg. Var. 

6 (3:1,2) 0.4333 (1:2,3)(2,1) 0.5290 -- -- 

7 (1:2,3) 0.5675 (1,3)(2,1)(3,2) 0.4285 -- -- 

8 (2:1,3) 0.6190 (4:1,3)(4,2) 0.4927 -- -- 

9 (1:3,4) 0.5673 (1,4)(2,1)(3,3) 0.5175 (1,4)(2,1)(3,3)(4,2) 0.2963 

10 (1:4,5) 0.5000 (5:1,4)(4,2) 0.5237 (2,1)(2,4)(4,2)(4,3) 0.3398 

11 (1:4,3) 0.5729 (1:2,3)(2,1) 0.5363 (1,5)(2,1)(3,4)(4,2) 0.3239 

12 (4:2,6) 0.5246 (2,1)(4,2)(6,3) 0.5100 (2,1)(2,5)(4,2)(6,3) 0.3277 

13 (1:5,6) 0.5780 (1,6)(3,5)(4,2) 0.5000 (1,6)(2,1)(3,5)(5,4) 0.3190 

14 (7:1,6) 0.5769 (7:1,6)(4,2) 0.5156 (2,1)(2,6)(4,2)(6,4) 0.3309 

15 (1:6,7) 0.5820 (1,7)(3,6)(6,3) 0.5106 (1,7)(3,6)(4,2)(5,5) 0.3315 

16 (2:1,3) 0.5936 (8:1,7)(4,2) 0.5261 (2,1)(4,2)(6,3)(8,4) 0.3538 

17 (1:7,8) 0.5853 (1:2,3)(2,1) 0.5507 (1,8)(2,1)(3,7)(8,4) 0.3406 

18 (6:3,9) 0.5210 (3:6,9)(6,3) 0.5210 (2,1)(4,2)(6,3)(8,5) 0.3496 

19 (1:8,9) 0.5879 (1:2,3)(2,1) 0.5546 (1,9)(2,1)(3,8)(9,5) 0.3499 

20 (2:1,3) 0.5935 (4,2)(8,6)(10,5) 0.5126 (2,1)(4,2)(6,3)(10,5) 0.3496 
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