HERBICIDE RESISTANCE IN WEEDS AND ITS MANAGEMENT

Author - Manoj kumar

Working as an Assistant Professor In Lovely professional university in Department of Plant breeding and Genetics.

Article is about Herbicidal resistance and its types and mechanisms of herbicidal resistance and ways and means to control the resistance

Article

HERBICIDE RESISTANCE

Altered response of a formerly susceptible weed species to the extend that some individuals in the species are no longer susceptible.

HISTORY OF HERBICIDE RESISTANCE

- The resistance in weed *Senecio vulgaris* L. (Common groundsel) to triazines was detected in USA in 1968 and was reported by Ryan in 1970.
- In India, *Phalaris minor* developed resistance to isoproturon during 1992-93, and the same was reported by Malik and Singh (1995). This was the most serious case of herbicide resistance in the world.

TYPES OF HERBICIDE RESISTANCE

- 1) Cross-resistance
- 2) Negative cross resistance/ collateral
- 3) Multiple resistance
- 4) Reverse resistance
- 5) Co-resistance/compound resistance
- 1) Cross-resistance

When resistance in weed is evolved due to continuous use of same or more herbicides having similar mode of action/single resistance mechanism.

Common cocklebur resistant to one herbicide (eg. Classic, chlorimuron) may also be resistant to another herbicide (e.g. Scepter, imazaquin) with the same mode of action (ALS-inhibitor). This is known as cross-resistance. Photo courtesy of Dallas Peterson.

2) Negative cross resistance/collateral

Mechanism by which an individual resistant to one herbicide or a chemical family of herbicides shows higher or increased sensitivity to other herbicides than its natural wild type susceptible population.

Example:

Resistant biotype of *Phalaris minor* controlled more effectively by fenoxaprop-p-ethyl than susceptible wild type.

3) Multiple resistance

When resistance to several herbicides results from two or more distinct resistance mechanism in the same plant.

Common waterhemp {Amaranthustuberculatus (syn. rudis)} seedlings were identified as having multiple resistance, that is, resistance to both triazine and ALS-inhibiting herbicides, which have two different modes of action with different mechanisms conferring resistance. Photo courtesy of Dallas Peterson.

4) **Reverse resistance**

Phenomenon in which the weed biotypes resistant to a herbicide falls susceptible to the every herbicide if it is not used for a period of 7 - 10 years, instead some alternative herbicides are used to kill the resistant population.

5) Co-resistance/compound resistance

When weed develops resistance to both mixing partner herbicides of a mixture applied concurrently.

STATUS AND DISTRIBUTION OF HERBICIDE RESISTANT WEED BIOTYPES Herbicide Mode of action Sr. Biotypes Inhibition of ALS/AHAS Chlorsufuron 95 1 2 Inhibition of photosynthesis at PS II Atrazine 67 3 Inhibition of ACCase Diclofop methyl 35 Synthetic of auxins (Making IAA) 2.4-D 26 4 PS I electron diversion 5 Paraquat 24 21 Inhibition of photosynthesis at PS II Chlorturon 6 7 Inhibition of EPSP synthase Glyphosate 14 8 Microtubule assembly inhibition Trifluralin 10 Triallate 9 Inhibition of lipid synthesis (not ACCase) 8 Bleaching : inhibition of carotenoid synthase 4 10 Amitrol Inhibition of protoporphyrinogen oxidase 3 11 Oxyflurfen Flamprop methyl 2 12 Unknown Flurtamore 13 Bleaching: Inhibition of carotenoid biosynthesis at 2 phytoenedesaturase step (PDS) 14 Inhibition of cell division Butachlor 3 15 Inhibition of photosynthesis at PS II Bromoxynil 1 16 Inhibition of mitosis or microtubule polymerization Propham 1 Inhibition of cell wall (cellulose) synthesis 17 Dichlobenil 1 18 Unknown Difenzoquat 1

Loliumrigidum developed resistance to Amitrol and Atrazine applied concurrently.

19	Unknown					MSM	A	1	
			Tota	al				31	9
COUNTRY WISE HERBICIDE-RESISTANT WEED BIOTYPES EXISTING						G IN	THE		
WOR	VORLD TILL JULY, 2008								
Cou	ntry	Weed biot	ypes						
U.S.	А.	122							
Autr	alia	51							
Cana	ada	44							
Fran	ce	32							
Spai	n	30							
U.K.		24							
Israe	el	23							
Gern	nany	19							
Japa	n	16							
Sout	h Africa	14							
Chin	ia	9							
Iran		5							
India	a	3							
RESIS	STANT WEED) SPECIES	TO VARI	OUS H	ERBIC	IDES			
Sr.	Herbicides		Weeds						
No.									
1.	Triazine		Amaranthu	ranthus spp., Chenopodium album,					
			Echinochle	loacrusg	alli, Poa	annua			
2.	Dalapan		Cynodon c	odon dactylon, Echinochloacrusgalli, Sorghum halepense					
3.	2,4-D Cirsiu		Cirsiumary	vense, l	Daucusc	carota			
4.	Diclofop-methyl Alopecurusmyoscuroids,			uroids,	Avenafatu	a, Loliumrigid	ium		
5.	Paraquat and diquat Lolium		Loliumper	rene, Po	aannua				
6.	Propanil Echine		Echinochl	loacrusg	alli, Ech	inochloac	olonum		
7.	Chlorsulfuron Lolium		Loliumrigi	idium, F	Kochiaso	coparia			
8.	Trifluralin Eleusin		Eleusine in	ndica, S	etariavi	ridis			
9.	Isoproturon Phalari		Phalaris m	ninor					
10.	Glyphosate Cirsiumarvense								

CAUSES FOR DEVELOPMENT OF HERBICIDE RESISTANCE

1. Over reliance on herbicides for weed control due to unavailability of labour and more labour wages

Destinide	Indi	a %	World %		
Pesticide	1997	2008	1997	2008	
Herbicide	16	20	47	52	
Insecticide	52	61	29	7	

Fungicide	30	17	19	32
Others	2	2	5	4

- 2. Repeated use of same herbicide or other herbicides having same mechanism of action
- 3. Crop monoculture
- 4. Minimum/zero tillage

FACTORS OF HERBICIDE RESISTANCE

- a) **Initial frequency:** Resistant genotypes are present in natural plant population in varying frequency
- b) **Selection pressure:** When the herbicides are applied, the susceptible individuals are killed and the pressure on resistant individuals to develop increases.

- c) **Fitness:** Measures the potential evolutionary success of a genotype.
- d) **Seed bank in soil:** Strong buffering influence in delaying the rate of appearance of resistance.

MECHANISM OF HERBICIDE RESISTANCE

- 1) An alteration of the herbicide site of action :
- ➤ In resistant biotypes the herbicide binding site of action is modified due to genetic change and this mechanism is responsible for resistance in most of the triazines, ALS inhibitors and dinitroaniline herbicides.
- Triazine herbicides are primarily photosynthetic inhibitors and in resistant biotypes, loss of herbicide binding ability occurs due to alteration of the binding site on thylakoid membrane of the chloroplast from serine to glycine at amino acid position 264.

The photosynthetic process occurs within a plant cell's chloroplasts. Certain herbicides can inhibit photosynthesis by binding to specific sites within the chloroplast. The relationship of a herbicide to the chloroplast binding site is very specific and any modification of the herbicide or binding site can eliminate herbicidal activity.

2) Enhanced metabolism:

Rapid degradation and or conjugation of herbicides into non-toxic or less toxic form are major mechanism of resistance in several weed species due to activation of certain enzymes **Example:**

- Resistance to atrazine in some population of *Abutiliontheophrasti* due to increased activity of glutathione-s-transferase that detoxifies atrazine.
- Resistance to propanil in *Echinochloacolona* is due to increased activity of enzyme arylacylamidase that detoxifies propanil.
- ▶ Isoproturon resistant in *Phalaris minor* is due to rapid degradation catalysed by cytochrome P-450 monoxygenase.

3) Differential translocation:

The less uptake of herbicide by the resistant biotypes generally results in less translocation of herbicides.

In *Loliumrigidium*, the resistant biotypes shows less translocation of chlorsulfuron compared with susceptible ones.

4) Sequestration and compartmentation:

Storing, accumulation or sequestration of the herbicides or their toxic metabolites in cell vacuoles, cells or tissues far from site of action and thus prevent them from reaching to site of action. (*Glutathione sulphyhydryl*)

Example:

Some lipophilic herbicides may become immobilized by partitioning into lipid rich glands or oil bodies (Stegink and Vaughn, 1988).

One of the major mechanism of resistance to paraquat is compartmentation in *Poaannua*.

As resistance is essentially irreversible, therefore, it is virtually impossible to reintroduce susceptibility into that community to its pre-resistance level. Hence, it is important to start managing herbicide resistant weeds in initial stage of detection otherwise it may have serious consequences.

Main principle is selection pressure for evolution of resistance, therefore, main focus should be on modifying those factors and practices which are responsible for quicker evolution of resistance.

- > Over reliance on herbicides for control of weeds
- Repeated use of same herbicide or other herbicides having same mechanism of action
- Crop monoculture
- Minimum/zero tillage

1) Use of alternative herbicides:

Immediately after detecting the herbicide resistance the use of that particular herbicide should be stopped.

Isoproturon – resistant *P. minor* has been effectively controlled by application of pendimethalin, clodinofop, fenoxaprop and sulfosulfuron.

2) Herbicides mixture and rotation:

The use of two or more herbicides having different mechanisms of action when used in mixture or rotation reduces the selection pressure or resistant biotypes and delay the rate of evolution as compared to individual herbicide used alone.

Crop	Herbicide mixture
Wheat	Diclofop-methyl 750 g + Fluroxypyr 100 g/ha
	Diclofop - methyl 750 g + Isoproturon 500 g/ha
	Isoproturon 750 g + tribennuron 100 g/ha
	Isoproturon 750 g + 2,4- D 500 g/ha
	Tralkoxydim 350 g + 2,4 –D 500 g/ha
Rice	Anilofos 0.4 kg + 2,4 –DEE 0.50 kg/ha
	Butachlor 1.0 kg + Propanil 2.0 kg/ha
	Butachlor 1.0 kg + 2,4-DEE 0.5 kg/ha
	Benthiocarb 1.0 kg + Chlorimuron 4 g/ha
	Anilofos 300 g + Metsulfuron-methyl 4 g/ha

RECOMMENDED HERBICIDE MIXTURES FOR DIFFERENT CROPS

3) Herbicide selection and application:

The record of herbicide resistant weeds reveals that few weeds have evolved resistance to chloracetamides, diphenyl ether and glyphosate despite extensive use of these herbicides. Therefore, they are considered as a low risk for the evolution of herbicide resistance in weeds.

Isoproturon – resistant P. minor has been effectively controlled by application of pendimethalin, clodinofop, fenoxaprop and sulfosulfuron.

Herbicide group	Degree of risk
Group A to B	Has high risk for development of resistance
Group C to H	Moderate risk for development of resistance
Group I to H	Low risk for development of resistance

CLASSIFICATION OF HERBICIDE BASED ON MODE OF ACTION

Group	Mode of action	Chemical family	Active ingredient
Α	Inhibition of acetyle	Aryloxyphenoxy	Clodinofop-propargyl
	CoA carboxylase	propionates	
	(ACCase)	Cyclohexannediones	sethoxidim
В	Inhibition of acetolactate	Sulfonylureas	Chlorimuron-ethyl
	synthase (ALS/AHAS)	Imidazolinones	Imazathathyr
		Triazolopyrimidines	Diclosulam
		Pyrimidinylthiobenzoiates	Pyriminobac-methyl
C1	Inhibition of	Triazines	Atrazine, simazine
	photosynthesis at	Triazinones	Metribuzin
	photosystem II	Pyridazinone	Pyrazon
		Phenyl carbamates	Desmediphem
C2	Inhibition of	Ureas	Isoproturon, Diuron
	photosynthesis at photosystem II	Amide	Propanil

C3	Inhibition of	Nitriles	Bromoxynil
	photosynthesis at	Benzothiadiazole	Bentazon
	photosytem II		
D	Photosystem I electron	Bipyridiliums	Diquat, paraquat
	diversion		
Ε	Inhibition of	Diphenyl ether	Lactofen, oxyflourfen
	Protoporphyrinogen	Thiadiaazoles	Thidiazim
	oxidase	Oxadiazole	Oxadiazon
		Triazolinone	Cafentrazone
		Pyridazinone	Norflurazone
F1	Bleaching inhibition of	Nicotinanilie	Diflufenican
	caretenoidbiosynthesis	Others	Flurtamone
F2	Bleaching inhibition of 4-	Triketone	Sulcotrione
	hydroxyphenyl-pyruvate-	Isoxasole	Isoxaflutole
	dioxygenase (4-HPPD)		
F3	Bleaching inhibition of	Pyrazole	Pyrazoynate
	caretenoid biosynthesis	Triazole	Amitrole
	(unknown target)	Isoxazolidinone	Clomazone
G	Inhibition of EPSPS	Glycines	Glyphosate, sulfosate
	synthase		
Н	Inhibition of glutamine	Phosphinic acids	Glufisinate-ammonium
	synthase		
Ι	Inhibition of DHP	Carbamate	Asulam
	(dihydropteroate)		
	synthase		
K1	Microtubule assembly	Dinitroanilines	Trifluralin, pendimethalin
	inhibition	Phosphoroamidate	Amiprophos-methyl
			butamiphos
		Pyradazines	Dithiopyr
		Benzoic acid	DCPA
K2	Inhibition of mitosis	Carbamates	Propham
		Benzyl ether	Cinmethalin
K3	Inhibition of cell division	Chloro-acetamides	Alachlor, Butachlor
		Carbamate	Carbetamide
		Acetamides	Diphenamid
		Benzamides	Propyzamide
		Oxyacetamids	Fluthiamid
L	Inhibition of cell wall	Nitriles	Dichlobenil
	(cellulose) synthesis	Benzamide	Isoxaben
Μ	Uncoupling (membrane	Dinitrophenols	DNOC, dinoseb
	disruption)	-	
Ν	Inhibition of lipid	Thiocarbamates	EPTC,

	synthesis not ACCase	Phosphorodithioate	Bensulide
	inhibition	Benzafuran	Ethofumesate
		Cholo carbonic acid	TCA, dalapon
0	Synthetic auxins (IAA)	Phenoxy-carboxylic acids	2,4-D, 2,4,5 – T, MCPB
		Benzoic acid	Dicamba
		Pyridie carboxylic acids	Clopyralid
		Quiniline carboxylic acids	Quinclorac
		Others	Benazolin-ethyl
Р	Inhibition of indoleacetic	Phthalamate	Naptalam
	acid action	Semi-carbazone	Diflufenzopyr
Z	Unknown	Arvlamio-propionic acid	Flaprop-methyl
		Organoarsenicals	DSMA, MSMA
		Others	Bromobutideflurenoldymron

4) Crop rotation:

Crop rotation also facilitates herbicide rotation. Many serious weeds are always associated with specific crops. Due to change of planting time in each crop, use of different weed control measures, the substituted crop can give the effective control of weeds.

Example:

Problem of *Phalaris minor*in rice-wheat system, could be tackled by inclusion of maize in kharifor berseem/sunflower/ mustard/barley or oat in rabi.

5) Tillage practices:

Minimum and zero till systems, the weed seeds remain close to soil surface and susceptible individuals are killed by herbicides and also the change of dilution of resistance from buried seed is less.

Deep tillage: Deep tillage/inversion tillage reduced the requirement of herbicides and delay the build up of resistance due to reduction in selection pressure.

OTHER CULTURAL PRACTICES TO AVOID OVER RELIANCE ON HERBICIDES

- 1) Stale seed bed preparation
- 2) Selection of competitive crop
- 3) Modifying the time of planting
- 4) Optimum seed rate
- 5) Crop stimulation

INTEGRATED WEED MANAGEMENT PRACTICES (FAO, 1966)

Adoption of IWM involving physical, cultural, chemical and biological methods in an integrated fashion without excessive reliance on any single method, can help in successfully managing herbicide resistance.

Example:

Summer deep ploughing + stale seed bed + use of weed free seed for sowing + postemergence herbicides - can dilute the resistance against *Phalaris minor* in wheat.

References (if any)		
1.		
2.		

Terms - Do not remove or change this section (It should be emailed back to us as is)

- This form is for genuine submissions related to biotechnology topics only.
- You should be the legal owner and author of this article and all its contents.
- If we find that your article is already present online or even containing sections of copied content then we treat as duplicate content such submissions are quietly rejected.
- If your article is not published within 3-4 days of emailing, then we have not accepted your submission. Our decision is final therefore do not email us enquiring why your article was not published. We will not reply. We reserve all rights on this website.
- Do not violate copyright of others, you will be solely responsible if anyone raises a dispute regarding it.
- Similar to paper based magazines, we do not allow editing of articles once they are published. Therefore please revise and re-revise your article before sending it to us.
- Too short and too long articles are not accepted. Your article must be between 500 and 5000 words.
- We do not charge or pay for any submissions. We do not publish marketing only articles or inappropriate submissions.
- Full submission guidelines are located here: http://www.biotecharticles.com/submitguide.php
- Full Website terms of service are located here: http://www.biotecharticles.com/privacy.php

As I send my article to be published on BiotechArticles.com, I fully agree to all these terms and conditions.