Seed Hardening for drought tolerance crop seed

Rajdeep Mundiyara¹, Prem Kumar² and Mamta Bajya³

¹Seed Officer, Rajasthan State Seeds Corporation, Mandore, Jodhpure

² Department of Plant Philology, Jobner

Email of corresponding author: rmundiyara5@gmail.com

Summary

Quality seeds play a major role, along with improved package of practices leading to enhanced productivity. Safe guarding seeds during initial stage of germination will give a special impetus for the seed to overcome the moisture stress condition and develop into a vigorous plant. In dryland agriculture, drought resistance of plant is one of the very important factor to get the higher yield. Though this is largely depends on genetic makeup of the variety, pre-sowing treatments like 'hardening' also practiced to defy the ill effects of drought on emergence and growth of crop.

Introduction

In India, nearly 70% of cultivated land is rainfed and accounts about 42 % of the total quantity of food grains produced. The low productivity under rainfed condition is due to use of poor quality seeds, soil moisture deficit, low and erratic rainfall and improper crop management. For enhancing productivity, quality seeds play a major role. Seed hardening is a practice adopted to alleviate the moisture stress or making the plant resistant to moisture stress. Seeds are exposed to changing and often adverse environments in the soil for a considerably long period beginning with sowing and ending with emergence. The period of imbibition is extremely sensitive to changes in the environment and slight and sudden changes appear to profoundly affect the seedling emergence. Researchers used water as a hydrating agent and reported that pre-sowing seed hardening (wetting and drying) modified the seed and seedling quality characters and thereby enhanced the yield. Hence, seed hardening is one of the physiological pre-sowing seed management practice given to seeds to resist drought and to boost up the yield and is being in practice from time immemorial owing to the better performance among the agriculturists.

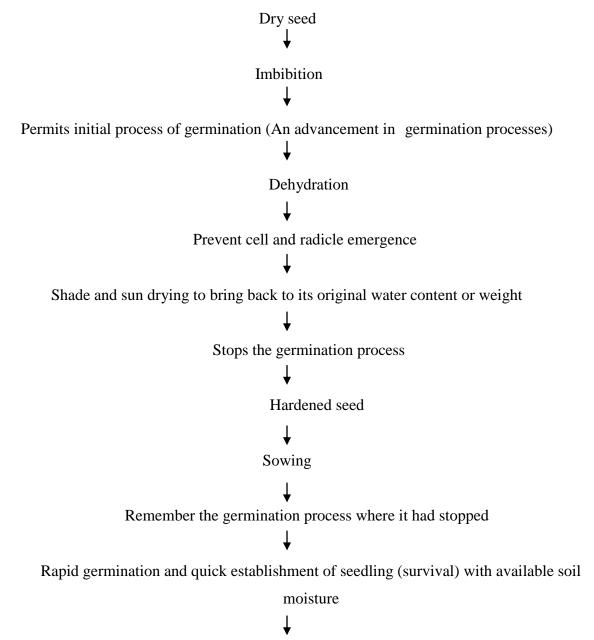
Seed Hardening

It is the process of hydrating the seed to initiate the pre-germinative metabolism followed by dehydration which fixes the biochemical events. It is done to impart resistance against stress conditions *viz.*, drought and cold to the emerging seedlings.

Different physiological activities within the seed occur at different moisture levels and the last physiological activity in the germination process is the emergence of radicle. The initiation of radicle emergence requires high seed water content (upto 30%). By limiting seed water content, all the metabolic steps necessary for germination can occur without the irreversible act of radicle emergence. Prior to radicle emergence, the seed is considered desiccation tolerant, thus the hardened seed moisture content can be reduced by drying. After drying, hardened seeds can be stored for a short time prior to sowing. Pre-sowing hardening is one of the best methods that results in modifying the physiological and biochemical nature of seed so as to get the characters that are favourable for drought resistance. It can be done with water / dilute chemical solutions / growth regulating compounds or using commonly available natural tonics like coconut water or milk.

How it is done?

Seeds are soaked in water and allowed to absorb moisture upto 30-35 per cent of their weight and kept in swollen condition for 1-12h depending upon the crop species at 25^{0} C. Then, the seeds are spread in a thin layer for shade drying for 1 to 2 days. After shade drying, they are sundried for 1 to 2 days to bring back to the original moisture content or weight. The hardened seeds are used for sowing. The treatment is repeated for more times depending upon the kind and variety of crops.


Mode of action

The basis for pre-sowing seed hardening is significant increase in hydrophilic property of protoplasmic colloids namely viscosity and elasticity; increased phosphorylation activity of their mitochondria. Reduction in solute leakage by regaining cell membrane integrity, resumption of rate of protein and RNA synthesis characterized in the first period of imbibition and shortening of the time of DNA replication in the second hydration period. Simulation of long lived mRNA

under moisture stress conditions; simultaneous protein and proline content increase after hardening treatments.

Principle involved in seed hardening

During hardening process, a number of physicochemical changes occur and modifies the protoplasmic characters and increases the physiological activity of the embryo and associated structures. Eventually, due to more absorption of water due to increase in the elasticity of cell and development of a stronger and efficient root system.

Increased growth and productivity

Steps in seed hardening

Dry seed ↓

Soaking in water and/or dilute solutions of growth regulator and chemicals for

1-12h at 15-25^oC

↓

Shade drying (1 to 24h)

Ļ

Sun drying (1 to 2 days) to bring back to its original water content or weight

Ť

Hardened seed

Chemicals used for seed hardening

In addition to water, the following chemicals, growth regulators, vitamin, botanical leaf extract and microbial enhancers are recommended.

Chemicals	Role
Potassium nitrate	Involved in the physiological process of stomatal movement,
	osmo-regulation, cell wall and membrane permeability
Calcium chloride	Used to activate ATPase and amylase enzymes, participate in
	starch metabolism
Ammonium sulphate	Used as a constituents of amino acids like cystine, methionine,
	cystenine
Potassium chloride	Required for activation of enzyme process
Zinc sulphate	It induces the dehydrogenase, alcohol dehydrogenase and
	lactic dehydrogenase enzyme activity
Potassium di hydrogen	Used as a constituents of phospholipids, nucleotides and sugar
phosphate	phosphate
Growth regulators	Role

Gibberellic acid	Increases hydrolytic enzymes		
CCC, Kinetin	Biosynthesis of tRNA and closely related to nucleic acid		
	synthesis		
Ascorbic acid	Involved in several oxidation and reduction reactions		
Riboflavin	Participate in photo oxidation of IAA		
Biotin	Involved in amino acid fatty acid metabolism.		
Vitamins	Role		
Vit.K3	Involved in catalytic and regulating functions in cell		
	metabolism.		
Nicotinic acid	It interacts with IAA in auxin mediated process, involved in		
	hydrogen transfer process		
Pantothenic acid	Used as a component of many co enzymes		
Adenine	Increases the rate of DNA replication, rate of RNA and protein		
	biosynthesis.		
Botanical leaf extract	Role		
Pongamia (Millettia pinnata)	Bio enhancement due to presence of synergistic plant		
	metabolites		
Prosopis (Prosopis juliflora)	Stimulatory effects caused by plant growth hormones		
Moringa (Moringa oleifera)	Stimulatory effects caused by PGR		
Pulse sprout extract	Induction of sugars and vitamins that promotes growth		
Microbial enhancers	Role		
Azosprillum	Weak source of IAA		
Rhizobia	Plant growth hormones and induction of root nodulation		
Azatobacter	Source of PGR		
Trichoderma viridi	Fungal antagonist and PGR source		

Seed hardening techniques recommended for crops

Crops	Chemicals and concentration	Methodology
Pearlmillet	2% Potassium chloride	Dissolve 20 gm of the salt in 1000 ml of water.
		Soak 1 kg of seed in 650 ml of this solution for
		10h. and dry back to original moisture.

Sorghum	2% Potassium dihydrogen	Dissolve 20g of salt in 1000 ml of the solution
	phosphate	for 16h. and dry back to original moisture or
		weight
Maize,	2% Potassium dihydrogen	Dissolve 20g of salt in 1000 ml of the solution
Varagu, Tenai	phosphate	for 8h. and dry back to original moisture or
and Samai		weight
Cotton	2% Potassium chloride	Dissolve 20g of the salt in 1000ml of water.
		Soak 1kg of seed in 650 ml of solution for 10h
		and dry back to original moisture or weight.
Sunflower	2% Potassium chloride	Dissolve 20g of the salt in 1000 ml of water.
		Soak 1 kg of seed in 650 ml of solution for
		12h. and dry back to original moisture.
Pulses	100ppm Zinc sulphate	Dissolve 100 mg of the salt in 1000 ml of
Black gram	100ppm manganese sulphate	water. Soak 1 kg of seeds in 350 ml for 3h and
Green gram		dry back to original weight or moisture. Before
		soaking them in water or solution, precondition
		the seeds for 1h by keeping them in between
		two moist gunny bags
Ragi	0.2% Sodium chloride	Dissolve 2 g of salt in 1000ml of water. Soak 1
		kg of seed in 700 ml of solution for 6 hrs and
		dry back to original moisture content or
		weight.
Groundnut	0.5% calcium chloride	Dissolve 5 g of salt in 1000ml of water. Soak 1
		kg of seed in 300 ml of solution for 4 hours
		and dry back to original moisture or weight.
Redgram	100ppm Zinc sulphate	Dissolve 1000mg salt in 1000ml of water.
		Soak 1 kg of seed in 300 ml of solution for 4
		hrs and dry back to original moisture or
		weight.
Bengal gram	1% potassium dihydrogen	Dissolve 10g salt in 1000ml of water. Soak 1

Advantages

- Accelerate rapid germination and growth rate of seedling
- Plants from the treated seeds recover quickly from wilting when compared to plants from untreated seeds
- Flowering is slightly accelerated in treated plants
- Induces resistance to drought and salinity
- Seeds also withstand higher temperature (80-105°C) for prolonged periods (24-48h) without loss of viability
- By emerging early, seedlings will be able to compete more effectively with weeds
- Treated plants are generally better in growth and yield.
- It increases the speed of germination and germination percentage

Caution

For seed hardening to be very effective, hard seeds / dormant seeds must not be included. Because, hard seeds will not imbibe while dormant seeds need treatments to alleviate dormancy. Hence, prior to seed hardening, seed lots must be tested for germination and measures taken to reduce dormancy inducing factors.

Conclusion

It can be concluded that, seed hardening are now being practiced in many parts of the world to reduce germination time, synchronize germination, improve germination rate and produce better seedling stands. There is considerable evidence to show that drought resistance of plants can be increased by subjecting seeds to a soaking and drying before sowing. To achieve uniformity and synchrony of growth of plant under drought or salt stress condition, seed hardening can be adopted as a regular practice to boost the yield of rainfed crops. However, simple on farm, no cost or low cost techniques like hydration-dehydration with water or cow urine provides all the enhancements as received from salt induced hardening treatments.